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CHAPTER 1

INTRODUCTION TO STATISTICS

1.1 Basic Probability

This chapter is a reminder of some basics in probability and statistics, it contains some definitions and examples that we
will be using in the rest of this notes. Probability or chance can be measured on a scale which runs from zero to one,
where zero represents impossibility and one represents certainty.

1.1.1 Sample Space

A sample space, Ω, is the set of all possible outcomes of an experiment. The sample space can be classified into two main
categories: discrete, where the space contains a finite or countable number of distinct point, and continuous when the
space contains an uncountable distinct sample points. An event E is defined to be a subset of the sample space, E ⊆ Ω.

EXAMPLE 1.1

A manufacturer has five seemingly identical computer terminals available for shipping. Unknown to her, two of the
five are defective. A particular order calls for two of the terminals and is filled by randomly selecting two of the five
that are available.

a List the sample space for this experiment.

b Let A denote the event that the order is filled with two non defective terminals. List the sample points in A.

c List the possible outcome for event B where both terminals are defective.

d Let C represent the case where at least one of the terminals is defective.

Please enter \offprintinfo{(Title, Edition)}{(Author)}
at the beginning of your document.
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2 INTRODUCTION TO STATISTICS

Solution.

a Let the two defective terminals be labelled D1 and D2 and let the three good terminals be labelled G1, G2, and G3.
Any single sample point will consist of a list of the two terminals selected for shipment. The simple events may be
denoted by

E1 = {D1, D2}, E5 = {D2, G1}, E8 = {G1, G2}, E10 = {G2, G3}.
E2 = {D1, G1}, E6 = {D2, G2}, E9 = {G1, G3},
E3 = {D1, G2}, E7 = {D2, G3},
E4 = {D1, G3},

Thus, The sample space Ω contains 10 sample points Ω = {E1, E2, . . . , E10}.

b Event A = {E8, E9, E10}.

c B = {E1}.

d C = {E1, E2, E3, E4, E5, E6, E7}

J

1.1.2 Probability Axioms

Suppose Ω is a sample space associated with an experiment. To every event A in Ω (A is a subset of Ω), we assign a
number, P (A), called the probability of A, so that the following axioms hold:

1. P (a) ≥ 0.

2. P (Ω) = 1.

3. If A1, A2, A3, . . . form a sequence of pairwise mutually exclusive events in Ω (Ai ∩Aj = ∅ for i 6= j), then:

P (A1 ∪A2 ∪A3 ∪ . . . ) =

∞∑
i=1

P (Ai).

Other Consequences:

(i) P (Ā) = 1− P (A), therefore P (φ) = 0.

(ii) For any two events A1 and A2 we have the addition rule:

P (A1 ∪A2) = P (A1) + P (A2)− P (A1 ∩A2)

.

EXAMPLE 1.2

Following example (??), evaluate:

a Assign probabilities to the simple events in such a way that the information about the experiment is use.

b Find the probability of event A,B,C.

c Find the probability of A ∩B, A ∪ C and B ∩ C.
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Solution. a Because the terminals are selected at random, any pair of terminals is as likely to be selected as any other
pair. Thus, P (Ei) = 1/10, for i = 1, 2, . . . , 10, is a reasonable assignment of probabilities.

d Since A = E8 ∪ E9 ∪ E10, then P (A) = P (E8) + P (E9) + P (E10) = 3/10.

Also, P (B) = 1/10 and P (C) = 7/10.

c Since A ∩B = ∅, then P (A ∩B) = 0.

A ∪ C = Ω, then P (A ∪ C) = 1.

B ∩ C = E1, then P (B ∩ C) = 1/10.
J

1.1.3 Conditional Probability

Suppose P (A2) 6= 0. The conditional probability of the event A1 given that the probability of the event E2 is known, is
defined as:

P (A1|A2) =
P (A1 ∩A2)

P (A2)
.

The conditional probability is undefined if P (A2) = 0. The conditional probability formula above yields the multiplica-
tion rule:

P (A1 ∩A2) = P (A1)P (A2|A1) (1.1)
= P (A2)P (A1|A2)

1.1.4 Independence

Suppose that events A1 and A2 are in sample space Ω, A1 and A2 are said to be independent if

P (A1 ∩A2) = P (A1)P (A2).

In the case of conditional probability, this implies to P (A1|A2) = P (A1) and P (A2|A1) = P (A2). That means that
the knowledge of the occurrence of one of the events does not affect the likelihood of occurrence of the other. For more
general case, A1, A2, . . . are pairwise independent if P (Ai ∩ Aj) = P (Ai)P (Aj), for all i 6= j. They are mutually
independent if for all subsets P (∩jAj) =

∏
j P (Aj).

EXAMPLE 1.3

Back again to example (??), evaluate the probability of the event A given B and B given C.

Solution.
P (A|B) =

P (A ∩B)

P (B)
= 0.

P (B|C) =
P (B ∩ C)

P (C)
=

1/10

7/10
= 1/7.

J

Partition Law: Suppose B1, B2, . . . , Bk are mutually exclusive and exhaustive events, (i.e. Bi ∩ Bj = ∅, for all i 6= j
and ∪iBi = Ω ). Let A be any event, then

P (A) =

k∑
j=1

P (A|Bj)P (Bj).
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. Bayes’ Law: Suppose B1, B2, . . . , Bk are mutually exclusive and exhaustive events and A is any event, then

P (Bj |A) =
P (A|Bj)P (Bj)

P (A)
=

P (A|Bj)P (Bj)∑
i P (A|Bi)P (Bi)

.

EXAMPLE 1.4

(Cancer diagnosis) A screening programme for a certain type of cancer has reliabilities P (A|D) = 0 : 98,
P (A|D̄) = 0 : 05, where D is the event “disease is present” and A is the event “test gives a positive result”. It
is known that 1 in 10,000 of the population has the disease. Suppose that an individual’s test result is positive. What
is the probability that the person has the disease?

Solution. We require P (D|A). First, we need to find P (A):

P (A) = P (A|D)P (D) + P (A|D̄)P (D̄) = 0.98× 0.0001 + 0.05× 0.9999 = 0.050093.

By the use of Bayes’ rule;

P (D|A) =
P (A|D)P (D)

P (D)
=

0.0001× 0.98

0.050093
= 0.002.

Therefore, the person is still very unlikely to have the disease even though the test is positive. J

EXAMPLE 1.5

(Bertrand’s Box Paradox) Three indistinguishable boxes contain black and white beads as shown: [ww], [wb], [bb].
A box is chosen at random and a bead chosen at random from the selected box. What is the probability of that the
[wb] box was chosen given that selected bead was white?

Solution. Let E represent the event of choosing the [wb] box, W is the event of that the selected bead is white. By
partition law: P (W ) = 1× 1

3 + 1
2 ×

1
3 + 0× 1

3 . Then, using Bayes’ rule gives:

P (E|W ) =
P (E)P (W |E)

P (W )
=

1
3 ×

1
2

1
2

=
1

3
.

This means, even though a bead from the selected box has been seen, the probability that the box is [wb] is still 1/3. J

1.2 Random Variables

A Random variable X is a real-valued function for which the domain is a sample space. Given a random experiment
with sample space Ω, then X : Ω→ R. The space of the r.v X is the set of real numbers A = {x : x = X(ω), ω ∈ Ω}.
Furthermore, for any event A ⊂ A, then there is an event Ψ ⊂ Ω, such that P (A) = Pr{X ∈ A} = P (Ψ), where
Ψ = {ω : ω ∈ Ω, X(ω) ∈ A} and A = {x : x = X(ω), ω ∈ Ψ}, knowing that P (A) satisfy the probability axiom ??.
Note: A r.v X is called discrete if it defined on a discrete sample space (countable or finite), and it is called a continuous
r.v otherwise.
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EXAMPLE 1.6

Toss a coin twice, the the sample space is: Ω = {HH,HT, TH, TT}, suppose a r.v X represent the number of
heads. Then:

X(ω) =


0, if ω = TT

1, if ω = TH,HT

2, if ω = HH

(1.2)

Therefore, the space of X is A = {x : x = 0, 1, 2}, and the probability of x = 0, 1, 2: PrX = 0 = 1/4,
PrX = 1 = 1/2 and PrX = 2 = 1/4.

Assume the eventA = {x : x = 0, 1} ⊂ A, then P (A) = Pr(X ∈ A) = Pr(X = 0, 1) = Pr(X = 0)+Pr(X =
1) = 3/4.

EXAMPLE 1.7

Let A = {x : 0 < x < 2} be the sample space of a r.v X . For each event A ⊂ A, we define the probability set
function P (A) as

P (A) =

∫
x∈A

3

8
x2dx, x ∈ A (1.3)

= 0, e.w

If A1 = {x : 0 < x < 1/2} and A2 = {x : 1/2 < x < 1}. Find the P (A1), P (Ac1), P (A2), P (Ac2), P (A1 ∩
A2), P (A1 ∪A2)

Solution.

P (A1) =

∫
x∈A1

3

8
x2dx =

3

8

∫ 1/2

0

x2dx =
1

64
.

P (Ac1) = 1− P (A1) = 1− 1

64
=

63

64
.

P (A2) =

∫
x∈A2

3

8
x2dx =

3

8

∫ 1

1/2

x2dx =
7

8
.

P (Ac2) = 1− P (A2) = 1− 7

8
=

1

8
.

Since A1 ∩A2 = ∅, Then P (A1 ∩A2) = 0, and then

P (A1 ∪A2) = P (A1) + P (A2) =
57

64
.

J

EXAMPLE 1.8

Let A = {x : x = 1, 2, . . . } be the sample space of a r.v X . For each event A ⊂ A, we define the probability set
function P (A) as

P (A) = Pr(X ∈ A) =
∑
x∈Å

(
1

2

)x
, x ∈ A
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If A = {x : x = 1, 2}, B = {x : x = 2, 3}, C = {x : x = 1, 3, 5, . . . }. Find P (A), P (B), P (C), P (Ac), P (Bc),
P (Cc), P (A ∩B), and P (A ∪B).

Solution.

P (A) =
∑
x∈A

(
1

2

)x
=

2∑
x=1

(
1

2

)x
=

1

2
+

(
1

2

)2

=
3

4
⇒ P (Ac) =

1

4

P (B) =
∑
x∈B

(
1

2

)x
=

3∑
x=2

(
1

2

)x
=

(
1

2

)2

+

(
1

2

)3

=
3

8
⇒ P (Bc) =

5

8

P (C) =
∑
x∈C

(
1

2

)x
=

∞∑
x=1,step2

(
1

2

)x
=

1

2
+

(
1

2

)3

+

(
1

2

)5

+ · · · = 1/2

1− (1/2)2
=

2

3
⇒ P (Cc) =

1

3

A ∩B = {x : x = 2} ⇒ P (A ∩B) =
∑

x∈A∩B

(
1

2

)x
=

(
1

2

)2

=
1

4

P (A ∪B) = P (A) + P (B)− P (A ∩B) ==
3

4
+

7

8
− 1

4
=

7

8
J



CHAPTER 2

DISTRIBUTION OF RANDOM VARIABLES

2.1 The Probability Density Function (PDF)

Notationally, we will use an upper case letter, such as X or Y , to denote a random variable and a lower case letter, such
as x or y, to denote a particular value that a random variable may assume. For example, let X denote any one of the six
possible values that could be observed on the upper face when a die is tossed. After the die is tossed, the number actually
observed will be denoted by the symbol x. Note that X is a random variable, but the specific observed value, x, is not
random.

It is now meaningful to talk about the probability that X takes on the value x, denoted by Pr(X = x).

Definition: The probability that X takes on the value x, Pr(X = x), is defined as the sum of the probabilities of all
sample points in Ω that are assigned the value x. We will sometimes denote Pr(X = x) by p(x) or f(x). Because p(x)
or f(x) is a function that assigns probabilities to each value x of the random variable X .

Definition: The probability distribution for a discrete variable X can be represented by a formula, a table, or a graph
that provides p(x) = Pr(X = x) for all x.

EXAMPLE 2.1

A supervisor in a manufacturing plant has three men and three women working for him. He wants to choose two
workers for a special job. Not wishing to show any biases in his selection, he decides to select the two workers at
random. Let X denote the number of women in his selection. Find the probability distribution for X .

Solution. The supervisor can select two workers from six in
(

6
2

)
= 15 ways. Hence Ω contains 15 sample points,

which we assume to be equally likely because random sampling was employed. Thus, Pr(Ei) = 1/15, i = 1, 2, . . . , 15.

Please enter \offprintinfo{(Title, Edition)}{(Author)}
at the beginning of your document.
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8 DISTRIBUTION OF RANDOM VARIABLES

The values for X that have nonzero probability are 0, 1, and 2. The number of ways of selecting X = 0 women is(
3
0

)(
3
2

)
= 1× 3 = 3 sample points in the event X = 0, and

p(0) = Pr(X = 0) =

(
3
0

)(
3
2

)
15

=
3

15
=

1

5
.

Similarly,

p(1) = Pr(X = 1) =

(
3
1

)(
3
1

)
15

=
9

15
=

3

5
.

p(2) = Pr(X = 2) =

(
3
2

)(
3
0

)
15

=
3

15
=

1

5
.

Notice that (X = 1) is by far the most likely outcome. This should seem reasonable since the number of women equals
the number of men in the original group. Therefore, we can write the probability function in the formula:

p(x) =

(
3
x

)(
3

2−x
)(

6
2

) , x = 0, 1, 2.

Notice that, since p(x) = Pr(X = x) is a probability function, this means that the sum of p(x) over the space is equal to
one. J

Theorem: If f(x) is a probability density function (pdf) for a discrete or continuous random variable X , then the
following properties should be satisfied:

1. f(x) ≥ 0, for all x ∈ A.

2. discrete:
∑
x∈A f(x) = 1.

continuous:
∫
x∈A f(x) = 1.

For any subset of the sample of the sample points (A ⊂ A), a probability set function p(x) can be expressed in term of
the pdf f(x) as:

p(A) = Pr(x ∈ A) =

{∑
x∈A f(x), discrete∫

x∈A f(x), continuous

EXAMPLE 2.2

Let X be a discrete r.v defined on a sample set A = {x : x = 0, 1, 2, 3}, and let f(x) be a function defined on
A as: f(x) = 1

8

(
3
x

)
, x ∈ A. Examine whether f(x) is a pdf of X or not. If so, find: p(A) and p(Ac), where

A = {x : x = 1, 2}.

Solution.

For the fist condition:
f(x) > 0,∀x ∈ A.

For the second condition:

∑
x∈A

f(x) =
1

8

3∑
x=0

(
3

x

)
=

1

8

[(
3

0

)
+

(
3

1

)
+

(
3

2

)
+

(
3

3

)]
=

1

8
(1 + 3 + 3 + 1) = 1.
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This proves that f(x) is a pdf of X . Hence,

p(A) =
∑
x∈A

f(x) =
1

8

2∑
x=1

(
3

x

)
=

1

8

[(
3

1

)
+

(
3

2

)]
=

3

4
,

and p(Ac) = 1− p(A) = 1− 3
4 = 1

4 . J

EXAMPLE 2.3

LetX be a r.v defined on a sample setA = {x : x = 1, 2, 3, . . . } and let f(x) be a function defined onA as: f(x) =(
1
2

)x
, x ∈ A. Is f(x) a pdf of X? If so, evaluate the following probabilities: p(A), p(B), p(A ∩B), p(A ∪B) and

p(A|B), knowing that A = {x : x = 1, 2, 3} and B = {x : x = 1, 3, 5, . . . }

Solution.

f(x) > 0, ∀x ∈ A = {x : x = 1, 2, 3, . . . }.

∑
x∈A

f(x) =

∞∑
x=1

(
1

2

)x
=

1

2
+

(
1

2

)2

+

(
1

2

)3

+ · · · = 1/2

1− 1/2
= 1.

Hence, f(x) is a pdf of X .

In order to evaluate the probabilities:

p(A) =
∑
x∈A

f(x) =

3∑
x=1

(
1

2

)x
=

1

2
+

(
1

2

)2

+

(
1

2

)3

=
7

8

p(B) =
∑
x∈B

f(x) =

∞∑
x=1,step2

(
1

2

)x
=

1

2
+

(
1

2

)3

+

(
1

2

)5

+ · · · = 1/2

1− 1/4
=

2

3
.

A ∩B = {x : x = 1, 3} ⇒ p(A ∩B) =
∑

x∈A∩B
f(x) =

∑
x=1,3

(
1

2

)x
=

1

2
+

(
1

2

)3

=
5

8
.

p(A ∪B) = p(A) + p(B)− p(A ∩B) =
7

8
+

2

3
− 5

8
=

11

12
.

p(A|B) =
p(A ∩B)

p(B)
=

5/8

2/3
=

15

16
.

J
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EXAMPLE 2.4

Let X be a r.v defined on a sample set A = {x : 2 ≤ x ≤ 4} and let f(x) be a function defined on A as:
f(x) = 1

8 (x+1), x ∈ A. Examine whether f(x) is a pdf of X? If it is, find p(A), where A = {x : 1.5 ≤ x ≤ 2.5}.

Solution.

f(x) > 0, ∀x ∈ A = {x : 2 ≤ x ≤ 4}.

∫
x∈A

f(x)dx =

∫ 4

2

1

8
(x+ 1)dx =

1

16
(x+ 1)2

∣∣∣4
2

=
1

16
(25− 9) = 1.

Hence, f(x) is a pdf of X .

p(A) =

∫
x∈A

f(x)dx =

∫ 2

1.5

f(x)dx+

∫ 2.5

2

f(x)dx = 0 +

∫ 2.5

2

1

8
(x+ 1)dx =

1

16
(x+ 1)2

∣∣∣2
2
.5 =

13

320
.

J

EXAMPLE 2.5

Suppose that the function f(x) = e−x, x ∈ A is defined os a sample set A = {x : 0 < x < ∞} and that X is a
r.v. Show that f(x) is a pdf of X and evaluate p(A), p(B), p(A ∩ B) and p(A ∪ B), if A = {x : 0 < x < 3} and
B = {x : 1 < x <∞}.

Solution.

f(x) > 0, ∀x ∈ A = {x : 2 ≤ x ≤ 4}.

∫
x∈A

f(x)dx =

∫ ∞
0

e−xdx = −e−x
∣∣∣∞
0

= −(e−∞ − e0) = 1.

Hence, f(x) is a pdf of X .

For the probability evaluations:

p(A) =

∫
x∈A

f(x)dx =

∫ 3

0

e−xdx = 1− e−3.

p(B) =

∫
x∈B

f(x)dx =

∫ ∞
1

e−xdx = e−1.

A ∩B = {x : 1 < x < 3} ⇒ p(A ∩B) =

∫ 3

1

e−xdx = e−1 − e−3.

p(A ∪B) = p(A) + p(B)− p(A ∩B) = 1− e−3 + e−1 − e−1 + e−3 = 1.

J
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EXAMPLE 2.6

Verify that the following functions are pdf’s of a r.v X that defined as:

1. f(x) = x−2, A = {x : 1 < x <∞}.

2. f(x) = 4
9

(
2
x

) (
1
2

)x
, A = {x : x = 0, 1, 2}.

3. f(x) = 1− |1− x|, A = {x : 0 < x < 2}.

4. f(x) =

{
1 + x, −1 < x < 0

1− x, 0 ≤ x < 1

Solution.
3. f(x) ≥ 0,∀x ∈ A = {x : 0 < x < 2}.

f(x) = 1− |1− x| =

{
1− (1− x), 1− x ≥ 0→ x ≤ 1

1 + (1− x), 1− x < 0→ x > 1

f(x) =

{
x, 0 < x ≤ 1

2− x, 1 < x < 2

then, ∫
x∈A

f(x)dx =

∫ 1

0

xdx+

∫ 2

1

(2− x)dx =
1

2
x2
∣∣∣1
0

+
1

2
(2− x)2

∣∣∣2
1

=
1

2
+

1

2
= 1

J

EXAMPLE 2.7

Find the constant c that makes each of the following function pdf of a r.v X:

1. f(x) = c(x+ 1), x = 0, 1, 2, 3.

2. f(x) = c(xα−1 − xβ−1), 0 < x < 1, α > 1, β > 0.

3. f(x) = c(1 + x2)−1, −∞ < x <∞.

Solution. Since f(x) is a pdf, then it should satisfy the properties of the pdf, hence:

1.

1 =
∑
x∈A

f(x) =

3∑
x=0

c(x+ 1) = c(1 + 2 + 3 + 4) = 10c⇒ c = 1/10.

2.

1 =

∫
x∈A

f(x)dx =

∫ 1

0

c(xα−1 − xβ−1)dx = c

[
xα

α
− xβ

β

]1

0

= c

(
1

α
− 1

β

)
= c

β − α
αβ

⇒ c =
αβ

β − α
, β 6= α

3.

1 =

∫ ∞
−∞

c(1 + x2)−1dx = c tan−1 x
∣∣∣∞
−∞

= c
[
tan−1(∞)− tan−1(−∞)

]
= c

[
tan−1(∞) + tan−1(∞)

]
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= 2c tan−1(∞) = 2c
π

2
⇒ c =

1

π
.

J

Definition: The Mode of the distribution is the value of x that maximises the pdf f(x) of a r.v X . Note that the mode
of a continuous r.v is the solution of f ′(x) = 0 and f(x) < 0. Also, the mode may not be existed or a distribution may
have more than one mode.

EXAMPLE 2.8

Find the mode for the following pdf’s:

1. f(x) =
(

1
2

)x
, x = 1, 2, 3, . . . .

2. f(x) = 12x2(1− x), 0 < x < 1.

Solution.

1. f(x) =
(

1
2

)x
, x = 1, 2, 3, . . . , then x = 1 is the mode.

2. f(x) = 12x2(1− x), 0 < x < 1⇒ f ′(x) = 12(2x− 3x2), set f ′(x) = 0:

12(2x− 3x2) = 0⇒ x = 0, 2/3.

then, f ′′(x) = 12(2− 6x) = 24(1− 3x).

f ′′(0) = 24(1− 0) = 24 > 0

f ′′(2/3) = 24(1− 3(2/3)) = −24 < 0

hence, x = 2/3 is the mode.

J

2.1.1 The Probability Density Function in n−Dimensional Space

Let X1, X2, . . . , Xn be an n r.v’s (discrete or continuous) defined on n−D sample space A, and let Pr(X1 = x1, X2 =
x2, . . . , Xn = xn) = f(x1, x2, . . . , xn) be a function defined on A, such that:

1. f(x1, x2, . . . , xn) ≥ 0,∀(x1, x2, . . . , xn) ∈ A.

2.

1 =

{∑∑
· · ·
∑

(x1,x2,...,xn)∈A f(x1, x2, . . . , xn)∫ ∫
·· ·
∫

(x1,x2,...,xn)∈A f(x1, x2, . . . , xn)dx1, dx2, . . . , dxn

Then the function f(x1, x2, . . . , xn) is called pdf of r.v’s X1, X2, . . . , Xn. Furthermore, for all event A ⊂ A, the
probability of A, p(A), can be expressed in terms of the pdf by:

p(A) = Pr{(X1, X2, . . . , Xn) ∈ A} =

{∑∑
· · ·
∑

(x1,x2,...,xn)∈A f(x1, x2, . . . , xn).∫ ∫
·· ·
∫

(x1,x2,...,xn)∈A f(x1, x2, . . . , xn)dx1, dx2, . . . , dxn.
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EXAMPLE 2.9

Let X and Y be discrete r.v’s defined on a sample space A = {(x, y) : x = 1, 2, 3; y = 1, 2}, and let f(x, y) be a
function defined on A by f(x, y) = 1

21 (x+ y), (x, y) ∈ A.

1. Is f(x, y) a pdf of X and Y ?

2. If so, find p(A) and p(Ac), where A = {(x, y) : x = 1, 2; y = 1}.

Solution.

1. - f(x, y) > 0, ∀(x, y) ∈ A.
-

∑∑
(x,y)∈A

f(x, y) =

3∑
x=1

2∑
y=1

1

21
(x+ y) =

1

21

3∑
x=1

[(x+ 1) + (x+ 2)]

=
1

21

3∑
x=1

(2x+ 3) =
1

21
[5 + 7 + 9] = 1.

Then f(x, y) is a pdf of X and Y .

2.

p(A) =
∑ ∑

(x,y)∈A

f(x, y) =

2∑
x=1

1∑
y=1

1

21
(x+ y) =

1

21

2∑
x=1

(x+ 1) =
1

21
(2 + 3) =

5

21

⇒ p(Ac) = 1− 5

21
=

16

21
.

J

EXAMPLE 2.10

Let X and Y be two r.v’s defined on a sample space A = {(x, y) : x = 1, 2, . . . ; y = 0, 1, 2}, and let f(x, y) be a
function defined on A by

f(x, y) =

(
2

y

)(
1

2

)x+2

, (x, y) ∈ A

1. Is f(x, y) a pdf of X and Y ?

2. Find p(A), where A = {(x, y) : x = 1, 3, 5, . . . ; y = 1}.

Solution.

1. - f(x, y) > 0, ∀(x, y) ∈ A.
- ∑∑

(x,y)∈A
f(x, y) =

∞∑
x=1

2∑
y=0

(
2

y

)(
1

2

)x+2

=

∞∑
x=1

(
1

2

)x+2 [(
2

0

)
+

(
2

1

)
+

(
2

2

)]

=

∞∑
x=1

(
1

2

)x+2

(1 + 2 + 1) = 4

[(
1

2

)3

+

(
1

2

)4

+

(
1

2

)5

+ . . .

]
= 4

(1/2)3

1− (1/2)
= 1
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Then f(x, y) is a pdf of X and Y .

2.

p(A) =
∑∑

(x,y)∈A
f(x, y) =

∞∑
x=1,step2

1∑
y=1

(
2

y

)(
1

2

)x+2

=

∞∑
x=1,step2

(
1

2

)x+2(
2

1

)
= 2

∞∑
x=1,step2

(
1

2

)x+2

= 2

[(
1

2

)3

+

(
1

2

)5

+

(
1

2

)7

+ . . .

]
= 2

(1/2)3

1− (1/2)2
=

1

3
.

J

EXAMPLE 2.11

Let X and Y be continuous r.v’s defined on a sample space A = {(x, y) : 0 < x < 2; 2 < y < 4}, and let f(x, y)
be a function defined on A as f(x, y) = 1

8 (6− x− y), (x, y) ∈ A

1. Is f(x, y) a pdf of X and Y ?

2. Find p(A), where A = {(x, y) : 0 < x < 1; 2 < y < 3}.

Solution.

1. - f(x, y) ≥ 0, ∀(x, y) ∈ A.
- ∫ ∫

(x,y)∈A
f(x, y) =

∫ 2

x=0

∫ 4

y=2

1

8
(6− x− y)dydx =

1

8

∫ 2

0

[
6y − xy − y2

2

]4

2

dx

=
1

8

∫ 2

0

[(24− 4x− 8)− (12− 2x− 2)] dx =
1

8

∫ 2

0

(6− 2x)dx =
1

8

[
6x− x2

]2
0

=
12− 4

8
= 1

Then f(x, y) is a pdf of X and Y .

2.

p(A) =

∫ ∫
(x,y)∈A

f(x, y) =

∫ 1

x=0

∫ 3

y=2

1

8
(6− x− y)dydx = · · · = 3

8

J

EXAMPLE 2.12

X and Y are two r.v’s defined on a sample space A = {(x, y) : 0 < x < y < 1}, and let f(x, y) = 2 (x, y) ∈ A is
a function defined on A. is f(x, y) a pdf of X and Y ?

Solution.

- f(x, y) = 2 > 0, ∀(x, y) ∈ A.

- ∫ ∫
(x,y)∈A

f(x, y) = 2

∫ 1

x=0

∫ 1

y=x

dydx = 2

∫ 1

0

y
∣∣∣1
x
dx = 2

∫ 1

0

(1− x)dx = 2

[
x− x2

2

]1

0

= 2(1− 1

2
) = 1



CUMULATIVE DISTRIBUTION FUNCTION (CDF) 15

Then f(x, y) is a pdf of X and Y . J

Note: If f(x1, x2, . . . , xn) is a pdf of r.v’s X1, X2, . . . , Xn defined on a sample space A = {(x1, x2, . . . , xn) : −∞ <
xi <∞; i = 1, 2, . . . , n}, and if event A ⊂ A, where A = {(x1, x2, . . . , xn) : ai < xi < bi; i = 1, 2, . . . , n}. Then the
probability of A is:

p(A) = Pr{ai < xi < bi; i = 1, 2, . . . , n} =



b1∑
x1=a1

b2∑
x2=a2

· · ·
bn∑

xn=an

f(x1, x2, . . . , xn)

b1∫
x1=a1

b2∫
x2=a2

· · ·
bn∫

xn=an

f(x1, x2, . . . , xn)dx1, dx2, . . . , dxn

EXAMPLE 2.13

Find the constant c that makes the function f(x, y) = ce−x−y, 0 < x < y <∞ a pdf of r.v’s X and Y .

Solution. Since f(x, y) is a pdf of X and Y , then by definition
∫ ∫

(x,y)∈A f(x, y)dxdy = 1:

1 = c

∫ ∞
x=0

∫ ∞
y=x

e−x−ydydx = c

∫ ∞
0

e−x
[∫ ∞

x

e−ydy

]
dx = c

∫ ∞
0

e−x
[
−e−y

]∞
x
dx

= c

∫ ∞
0

e−x(0 + e−x)dx = c

∫ ∞
0

e−2xdx = c

[
1

2
e−2x

]∞
0

= c(0 +
1

2
) =

c

2
.

Therefore, c = 2. J

2.2 Cumulative Distribution Function (CDF)

Definition: The cumulative distribution function or the probability distribution of a r.v X , denoted by F (x) = Pr(X ≤
x),−∞ < x <∞. Let X be a r.v has a pdf f(x) defined on a sample space A, we define:

F (x) = Pr(X ≤ x) = Pr(−∞ < x <∞) =


x∑

t=−∞
f(t), discrete.

x∫
t=−∞

f(t)dt, continuous.

EXAMPLE 2.14

Suppose that X has a pdf p(x), defined on x = 0, 1, 2 as:

p(x) =

(
2

x

)(
1

2

)x(
1

2

)2−x

, x = 0, 1, 2.

Find F (x) for all x.

Solution. From the pdf p(x), we have: p(0) = 1/4, p(1) = 1/2, p(2) = 1/4. In order to find the distribution function
F (x), from definition of F (x) = Pr(X ≤ x), we should evaluate the probability for four regions of x:

−∞ < x < 0, 0 ≤ x < 1, 1 ≤ x < 2 and 2 ≤ x <∞.
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For x < 0: Because the only value of X that are assigned positive probabilities are 0, 1 and 2; and that non of these
values are less than 0, then f(x) = 0, ∀ −∞ < x < 0.

For 0 ≤ x < 1:

F (x) = Pr(0 ≤ x < 1) = Pr(X < 0) + Pr(X = 0) = 0 +
1

4
=

1

4
.

For 1 ≤ x < 2:

F (x) = Pr(1 ≤ x < 2) = Pr(X = 0) + Pr(X = 1) =
1

4
+

1

2
=

3

4
.

For x ≥ 2:

F (x) = Pr(X ≥ 2) = Pr(X < 0) + Pr(0 ≤ X ≤ 1) + Pr(1 ≤ X < 2) = 0 +
1

4
+

3

4
= 1.

Therefore, the distribution probability is:

F (x) = Pr(X ≤ x) =


0, x < 0

1/4, 0 ≤ x < 1

3/4, 1 ≤ x < 2

1, x ≥ 2

J

Notes:

1. F (−∞) = lim
x→−∞

F (x) = 0.

2. F (∞) = lim
x→∞

F (x) = 1.

3. F (x) is a non-decreasing function of x, if x1 < x2 then F (x1) ≤ F (x2).

4. 0 ≤ F (x) ≤ 1, because 0 ≤ Pr(X ≤ x) ≤ 1.

5. For a continuous r.v X , the pdf could be evaluated in terms of the cdf as:

f(x) =
d

dx
F (x).

6. For a discrete r.v X , the pdf could be evaluated in terms of the cdf as:

f(x) = Pr(X = x) = Pr(X ≤ x)− Pr(X ≤ x− 1) = F (x)− F (x− 1).

EXAMPLE 2.15

Let the r.v has a pdf f(x) = x
6 ; x = 1, 2, 3. Find the cdf of X

Solution.

F (x) = Pr(X ≤ x) =

x∑
τ=−∞

f(τ) =

x∑
τ=1

τ

6
=

1

6
(1 + 2 + · · ·+ x) =

x(x+ 1)

12

∴ F (x) =


0, x < 1
x(x+1)

12 , 1 ≤ x < 3

1, x ≥ 3

J
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EXAMPLE 2.16

Let the r.v has a pdf f(x) = 2x−3; 1 < x <∞. Find cdf of X

Solution.
F (x) = Pr(X ≤ x) =

∫ x

τ=−∞
f(τ)dτ =

∫ x

τ=1

2x−3dτ = −τ−2
∣∣∣x
1
1− 1

x2

∴ F (x) =


0, x ≤ 1

1− 1
x2 , 1 ≤ x <∞

1, x =∞
J

Remark: In order to evaluate the probability of a r.v X between a and b, we have two ways:

1. Using the pdf as:

Pr(a ≤ X ≤ b) =

{∑b
x=a f(x), discrete∫ b

x=a
f(x), continuous

2. Using the cdf as:
Pr(a ≤ X ≤ b) = Pr(X ≤ b)− Pr(X ≤ a) = F (b)− F (a).

EXAMPLE 2.17

Let the r.v has a pdf f(x) =
(

1
2

)x
; x = 1, 2, 3, . . . .

1. Find the cdf of X .

2. Evaluate Pr(2 ≤ X ≤ 4) using the pdf and the cdf.

Solution. 1.

F (x) =
x∑

τ=−∞
f(τ) =

x∑
τ=1

(
1

2

)τ
=

1

2
+

(
1

2

)2

+

(
1

2

)3

+ · · ·+
(

1

2

)x
=

(1/2)[1− (1/2)x]

1− (1/2)

∴ F (x) =


0, x < 1

1−
(

1
2

)x
, 1 ≤ x <∞

1, x =∞

2. Using the pdf:

Pr(2 ≤ x ≤ 4) =

4∑
x=2

(
1

2

)x
=

(
1

2

)2

+

(
1

2

)3

+

(
1

2

)4

=
7

16
.

Using the cdf:

Pr(2 ≤ x ≤ 4) = F (4)− F (2) = 1−
(

1

2

)4

− 1 +

(
1

2

)2

=
1

2
− 1

16
=

7

16

J

Definition: The Median of a r.v X is the value of x for which the cdf F (x) = 1
2 .
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EXAMPLE 2.18

Find the median of the following distributions, where their pdf’s are defined as follows:

1. f(x) =
(

1
2

)x
, x = 1, 2, 3, . . . .

2. f(x) = x
6 , x = 1, 2, 3.

3. f(x) = 3x2, 0 < x < 1.

4. f(x) = 1
π (1 + x2)−1, −∞ < x <∞.

Solution. 1. From ex (??), F (x) = 1−
(

1
2

)x
. To evaluate the median, set F (x) = 1

2 :

1−
(

1

2

)x
=

1

2
⇒
(

1

2

)x
=

1

2
⇒ x = 1.

The median x = 1.

2. From ex (??), F (x) = x(x+1)
12 . To evaluate the median, set F (x) = 1

2 :

x(x+ 1)

12
=

1

2
⇒ x(x+ 1) = 6⇒ x2 + x− 6 = 0⇒ x = −3, 2.

The median x = 2 since −3 /∈ A.

3. F (X) =
∫ x
τ=−∞ f(τ)dτ =

∫ x
τ=0

3τ2dτ = τ3
∣∣∣x
0

= x3, 0 < x < 1.

Set F (x) = 1
2 ⇒ x3 = 1

2 ⇒ x = 1
3
√

2
is the median.

4. F (X) =
∫ x
τ=−∞ f(τ)dτ =

∫ x
τ=−∞

1
π (1 + τ)−1dτ = 1

π tan−1 τ |x−∞ = 1
2 + 1

π tan−1 x, −∞ < x <∞.

Set F (x) = 1
2 ⇒

1
2 + 1

π tan−1 x = 1
2 ⇒ x = 0 is the median.

J

EXAMPLE 2.19

Find the constant c in the following cdf’s and find the pdf for each case.

1. X is a r.v with a cdf:

F (x) =


0, x < 1

c[1− (1/2)x], 1 ≤ x <∞
1, x =∞

2. X is a r.v has a cdf:

F (x) =


0, x ≤
cx(x+ 1), 0 < x < 3

1, x ≥ 3

Solution.
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1. Since F (x) is a cdf, then: F (∞) = 1⇒ c[1− (1/2)∞] = 1⇒ c(1− 0) = 1⇒ c = 1. then:

F (x) =


0, x < 1

1−
(

1
2

)x
, 1 ≤ x <∞

1, x =∞

Therefore, the pdf f(x) = F (x)− F (x− 1):

f(x) = 1−
(

1

2

)x
− 1 +

(
1

2

)x−1

=

(
1

2

)x−1

−
(

1

2

)x
=

(
1

2

)x−1(
1− 1

2

)
∴ f(x) =

(
1

2

)x
, x = 1, 2, 3, . . .

2. Since F (∞) is a cdf, then: F (3) = 1⇒ 3c(3 + 1) = 1⇒ 12c = 1⇒ c = 1
2 , then:

F (x) =


0, x ≤ 0
1
12x(x+ 1), 0 < x < 3

1, x ≥ 3

Therefore, the pdf f(x) = F ′(x):

∴ f(x) =
1

12
(2x+ 1), 0 < x < 3

J

EXAMPLE 2.20

Find the cdf of the r.v X which has a pdf f(x) =

{
x, 0 < x < 1

2− x, 1 ≤ x < 2

Solution.

F (x) = Pr(X ≤ x) =



0, x ≤ 0
x∫
0

f(τ)dτ =
x∫
0

τdτ = 1
2τ

2
∣∣∣x
0

= 1
2x

2, 0 < x < 1

1∫
0

f(τ)dτ +
x∫
1

f(τ)dτ = 1− 1
2 (2− x)2, 1 ≤ x < 2

1, x ≥ 2

J

2.2.1 The Cumulative Distribution Function in n−Dimensional Space

Let X1, X2, . . . , Xn be n r.v’s defined on an n−Dimensional sample spaceA with pdf f(x1, x2, . . . , xn). We define the
cdf of X1, X2, . . . , Xn as:

F (x1, x2, . . . , xn) = Pr(X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn)

=



x1∑
τ1=−∞

x2∑
τ2=−∞

· · ·
xn∑

τn=−∞
f(τ1, τ2, . . . , τn), discrete.

x1∫
τ1=−∞

x2∫
τ2=−∞

· · ·
xn∫

τn=−∞
f(τ1, τ2, . . . , τn)dτ1dτ2 . . . dτn, continuous.
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EXAMPLE 2.21

Let the pdf of r.v’s X and Y be: f(x, y) = x
6

(
1
2

)y
; x = 1, 2, 3, y = 1, 2, . . . . Find the cdf of X and Y .

Solution.

F (x, y) = Pr(X ≤ x, Y ≤ y) =

x∑
t=−∞

y∑
s=−∞

f(t, s) =

x∑
t=1

y∑
s=1

t

6

(
1

2

)s

=

3∑
t=1

t

6

[
1

2
+

(
1

2

)2

+ · · ·+
(

1

2

)y]
=

3∑
t=1

t

6

(1/2)[1− (1/2)y]

1− (1/2)

= [1− (1/2)y]
1

6
(1 + 2 + · · ·+ x) =

1

6

x(x+ 1)

2
[1− (1/2)y]

∴ F (x, y) =


0, x < 1, y < 1
x(x+1)

12 [1−
(

1
2

)y
], 1 ≤ x < 3, 1 ≤ y <∞

1, x ≥ 3, y =∞
J

EXAMPLE 2.22

Let X and Y be two r.v’s defined on sample space A = {(x, y) : 0 < x < 2; 2 < y < 4}, and let f(x, y) =
1
8 (6− x− y) is a pdf of X and Y . Find the cdf.

Solution.

F (x, y) = Pr(X ≤ x, Y ≤ y) =

∫ x

t=−∞

∫ y

s=−∞
f(t, s)dtds =

∫ x

0

∫ y

2

1

8
(6− t− s)dsdt

=
1

8

∫ y

2

[
6t− 1

2
t2 − st

]x
0
ds =

1

8

∫ y

2

(
6x− 1

2
x2 − xs

)
ds =

1

8

[
6xs− 1

2
x2s− 1

2
xs2
]y

2

=
1

8

(
6xy − 1

2
x2y − 1

2
xy2 − 10x+ x2

)
=

x

16
(12y − xy − y2 − 20 + 2x).

∴ F (x, y) =


0, x ≤ 0, y ≤ 2
x
16 (12y − xy − y2 − 20 + 2x), 0 < x < 2, 2 < y < 4

1, x ≥ 2, y ≥ 4

J

Note:

1. If X1, X2, . . . , Xn are continuous r.v’s, then the pdf is:

f(x1, x2, . . . , xn) =
∂nF (x1, x2, . . . , xn)

∂x1, ∂x2, . . . , ∂xn
.

2. For 2−dimension discrete sample space, the pdf could be written as:

f(x, y) = F (x, y)− F (x, y − 1)− F (x− 1, y) + F (x− 1, y − 1).
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EXAMPLE 2.23

Let the r.v’s X , Y and Z have pdf f(x, y, z) = 6 e−(x+y+z), 0 < x < y < z <∞. Find the cdf of X,Y and Z.

Solution.

F (x, y, z) = Pr(X ≤ x, Y ≤ y, Z ≤ z) =

∫ x

t=−∞

∫ y

s=−∞

∫ z

q=−∞
f(t, s, q)dtdsdq =

∫ x

0

∫ y

t

∫ z

s

e−(t+s+q)dqdsdt

∴ F (x, y, z) =


0, x ≤ 0, y ≤ 0, z ≤ 0

6
[

1
2e
−(x+2y) − e−(x+y+z) − 1

6e
−3x + 1

2e
−(2x+z) − 1

2e
−2y + e−(y+z) − 1

2e
−z + 1

6

]
, 0 < x < y < z <∞

1, x = y = z =∞
J

2.3 Transformation of Variables (cdf technique)

Assume that X is a r.v defined on sample space A and has pdf f(x) and cdf F (x). Consider a new r.v Y as a function
of X , say Y = ψ(X) defined on a sample space B = {y : y = ψ(x), x ∈ A}. The aim now is to find the distribution
of r.v Y , let G(y) = Pr(Y ≤ y) and g(x) represent the cdf and the pdf of Y . If the function y = ψ(x) is a one-to-one
transformation that maps the space A on to the space B (y = ψ(x) : A 1−1−−−→

on to
B), then the inverse function x = ψ−1(y)

exist. Therefore the cdf of Y can be written as:

G(y) = Pr(Y ≤ y) = Pr(ψ(X) ≤ y) = Pr(X ≤ ψ−1(y)) = F
(
ψ−1(y)

)
, y ∈ B.

Hence, the pdf g(y) is:

g(y) =

{
G(y)−G(y − 1), discrete
G′(y), continuous

EXAMPLE 2.24

Let the r.v X has a pdf f(x) = 1
2 , −1 < x < 1. Find the distribution of r.v Y = X2.

Solution. Case 1 Since we have the pdf f(x) = 1
2 , −1 < x < 1, then:

F (x) = Pr(X ≤ x) =

∫ x

−1

f(τ)dτ =


0, x ≤ −1
1
2 (x+ 1), −1 < x < 1

1, x ≥ 1

Let G(y) and g(y) represent the cdf and the pdf of Y defined on sample space B = {y : 0 < y < 1}, and

G(y) = Pr(Y ≤ y) = Pr(X2 ≤ y) = Pr(−√y ≤ X ≤ √y) = Pr(X ≤ √y)− Pr(X ≤ −√y)

= F (
√
y)− F (−√y) =

1

2
(
√
y + 1)− 1

2
(−√y + 1) =

1

2
2
√
y

∴ G(y) =


0, y ≤ 0
√
y, 0 < y < 1

1, y ≥ 1
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Then, the pdf g(y) = G′(y) = 1
2
√
y , 0 < y < 1.

Case 2 The pdf of r.v X f(x) = 1
2 , −1 < x < 1. Let G(y) and g(y) be the cdf and pdf of Y = X2 with sample space

B = {y : 0 < y < 1}. Then:

G(y) = Pr(Y ≤ y) = Pr(X2 ≤ y) = Pr(−√y ≤ X ≤ √y) =

√
y∫

−√y

f(x)dx =

√
y∫

−√y

1

2
dx =

√
y

∴ G(y) =


0, y ≤ 0
√
y, 0 < y < 1

1, y ≥ 1

J

EXAMPLE 2.25

The function f(x) = x
6 , x = 1, 2, 3 is a pdf of r.v X that is defined on sample space A = {1, 2, 3}. Find the cdf of

r.v Y = 2X + 1.

Solution. The cdf of r.v X is:

F (x) = Pr(X ≤ x) =

x∑
τ=1

f(τ) =
1

6

x∑
τ=1

τ =
1

6
(1 + 2 + · · ·+ x)

∴ F (x) =


0, x < 1
1
12x(x+ 1), 1 ≤ x < 3

1, x ≥ 3

Let G(y) is the cdf of r.v Y = 2X + 1 defined on sample space B = {3.5.7}, then:

G(y) = Pr(Y ≤ y) = Pr(2X + 1 ≤ y) = Pr
(
X ≤ 1

2
(y − 1)

)
= F

(y − 1

2

)
=

1

12

(
y − 1

2

)(
y − 1

2
+ 1

)

∴ G(y) =


0, y < 3
1
48

(
y2 − 1

)
, 3 ≤ y < 7

1, y ≥ 7

J

EXAMPLE 2.26

Find the distribution of the r.v Y = − lnX , where X is defined on sample space A = {x : 0 < x < 1} with pdf
f(x) = 1, x ∈ A.

Solution. In order to evaluate the cdf of r.v X:

F (x) = Pr(X ≤ x) =

∫ t

0

f(τ)dτ =

∫ x

0

dτ = τ
∣∣∣x
0
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∴ F (x) =


0, x ≤ 0

x, 0 < x < 1

1, x ≥ 1

Assume G(y) and g(y) represent the cdf and pdf of r.v Y = − lnX defined on sample space B = {y : 0 < y <∞},

G(y) = Pr(Y ≤ y) = Pr(− lnX ≤ y) = Pr(lnX ≥ y) = Pr(X ≥ e−y)

= 1− Pr(X ≤ e−y) = 1− F
(
e−y
)

∴ G(y) =


0, y ≤ 0

1− e−y, 0 < y <∞
1, y =∞

This leads to the pdf of r.v Y , g(y) = G′(y) = e−y, y ∈ B J

2.4 Mathematical Expectation

We have observed that the probability distribution for a random variable is a theoretical model for the empirical distri-
bution of data associated with a real population. If the model is an accurate representation of nature, the theoretical and
empirical distributions are equivalent. Consequently, we attempt to find the mean and the variance for a random variable
and thereby to acquire numerical descriptive measures, parameters, for the probability distribution.

Definition: LetX be a r.v with probability function f(x) and u(X) be a real-valued function ofX . Then the expected
value of u(X) is given by:

E[u(X)] =



∞∑
x=−∞

u(x)f(x), discrete

∞∫
x=−∞

u(x)f(x)dx, continuous

EXAMPLE 2.27

Let the random variable X has a pdf f(x) = x
6 , x = 1, 2, 3. Find E[X], E[X2], E[X3], E[(X − 1)3].

Solution.

-

E[X] =
∑
x

xf(x) =

3∑
x=1

x
x

6
=

1

6
(12 + 22 + 32) =

14

6
=

7

3

-

E[X2] =
∑
x

x2f(x) =
1

6

3∑
x=1

x2 =
1

6
(13 + 23 + 33) =

36

6
= 6

-

E[X3] =
∑
x

x3f(x) =
1

6

3∑
x=1

x3 =
1

6
(14 + 24 + 34) =

36

6
=

98

6
=

49

3

-

E[(X − 1)3] =
∑
x

(x− 1)3f(x) =
1

6

3∑
x=1

x(x− 1)3 =
1

6
(0 + 2 + 24) =

26

6
=

13

2

J
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EXAMPLE 2.28

Let the random variable X has a pdf f(x) = 1
18 (X + 2), −2 < X < 4. Find E[3X], E[(X − 2)3].

Solution.

-

E[3X] =

∫
x

3xf(x) =

∫ 4

x=−2

3x
1

18
(x+ 2)dx =

1

6

∫ 4

−2

(x2 + 2x)dx =
1

6

[
x3

3
+ x2

]4

−2

=
1

6

[(
64

3
+ 16

)
−
(
−8

3
+ 4

)]
=

1

6

[
64

3
+ 16 =

8

3
− 4

]
= 6

-

E[(X + 2)3] =

∫ 4

x=−2

(x+ 2)3 1

18
(x+ 2)dx =

1

18

∫ 4

−2

(x+ 2)4dx =
1

18

(x+ 2)5

5

∣∣∣4
−2

=
1

90

[
65 − 0

]
= 86.4

J

Notes:

If c is constant, then E[c] = c.

If c is constant and u is a function of X , then E[cu(X)] = cE[u(X)].

If c1, c2, . . . , cn are constants, and u1, u2, . . . , un are functions, then
∑n
i=1E[ciui] =

∑n
i=1 ciE[ui].

EXAMPLE 2.29

Let the r.v X has a pdf f(x) = 2(1− x), 0 < x < 1. Find E[X], E[X2] and E[6X + 3X2 − 4].

Solution. -

E[X] =

∫ ∞
−∞

xf(x)dx = 2

∫ 1

0

x(x− 1)dx = 2

[
x2

2
− x3

3

]1

0

=
1

3
.

-

E[X2] =

∫ ∞
−∞

x2f(x)dx = 2

∫ 1

0

x2(x− 1)dx = 2

[
x3

3
− x4

4

]1

0

=
1

6
.

-

E[6X + 3X2 − 4] = 6E[X] + 3E[X2]− 4 = 6
1

3
+ 3

1

6
− 4 =

−3

2
.

J



MATHEMATICAL EXPECTATION 25

2.4.1 Some Special Mathematical Expectations

In this section, we will introduce some special mathematical expectation which are most common in the use of statistical
problems.

1. The Mean (or the expected vale) of a r.v X is the mathematical expectation E[X] and denoted by µ.

2. If X is a r.v with mean E(X) = µ, the Variance of r.v X , denoted by σ2 or V ar(X), is defined to be the expected
value of (Xµ)2. That is,

σ2 = V ar(x) = E[(X − µ)2].

The standard deviation of X is the positive square root of σ2.

Properties of Variance

i The variance σ2 = E[(x− µ)2] = E[X2 − 2µX + µ2] = E[X2]− µ2.

ii If c is a constant, then V ar(c) = 0.

iii If c is a constant and X is a r.v, then V ar(cX) = c2V ar(X)

3. The mathematical expectation µ′r = E[Xr] is called the rth moment about the origin.

4. The mathematical expectation µr = E[(X − µ)r] is called the rth moment about the mean.

5. The Moment Generating Function (mgf) of a r.v X is the expectation of E[etX ] (if exist), and denoted by M(t).
The reason of the function M(t) is called mgf can be explained by the following statement. We have

etx = 1 + tx+
(tx)2

2!
+

(tx)3

3!
+ . . . .

Then, the expectation

E[etx] =
∑
x

etxf(x) =
∑
x

[
1 + tx+

(tx)2

2!
+

(tx)3

3!
+ . . .

]
f(x)

=
∑
x

f(x) + t
∑
x

xf(x) +
t2

2!

∑
x

x2f(x) +
t3

3!

∑
x

x3f(x) + . . .

= 1 + tµ′1 +
t2

2!
µ′2 +

t3

3!
µ′3 + . . . .

This argument involves an interchange of summations, which is justifiable ifM(t) exists. Thus,E[etX ] is a function
of all the moments µ′k about the origin, for k = 1, 2, 3, . . . . In particular, µ′k is the coefficient of tk/k! in the series
expansion of M(t).

Notes:

i M(0) = 1.

ii If we can find E[etX ], we can find any of the moments for X . If M(t) exist, then for any positive integer k,

dkM(t)

dtk

∣∣∣∣∣
t=0

= M (k)(0) = µ′k.

In other words, if you find the kth derivative of M(t) with respect to t and then set t = 0, the result will be µ′k.
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iii If we set ξ(t) = lnM(t), then

ξ′(t) =
M ′(t)

M(t)
⇒ ξ′(0) =

M ′(0)

M(0)
=
E[X]

1
= µ

ξ′′(t) =
M(t)M ′′(t)−M ′(t)M ′(t)

[M(t)]2
⇒ ξ′′(0) =

M(0)M ′′(0)− [M ′(0)]2

[M(0)]2

⇒ ξ′′(0) =
E[X2]− µ2

12
= σ2.

EXAMPLE 2.30

The probability distribution of a r.v Y is given in the following table. Find the mean, variance and standard deviation
of Y .

Probability distribution of Y
y 0 1 2 3

p(y) 1/8 1/4 3/8 1/4

Solution. By definition:

µ = E[Y ] =

3∑
y=0

yp(y) = 0(1/8) + 1(1/4) + 2(3/8) + 3(1/4) = 1.75

σ2 = E[(Y−µ)2] =

3∑
y=0

(y−µ)2p(y) = (0−1.75)2(1/8)+(1−1.75)2(1/4)+(2−1.75)2(3/8)+(3−1.75)2(1/4) = 0.9375

or

E[Y 2] =

3∑
y=0

y2p(y) = (0)2(1/8) + (1)2(1/4) + (2)2(3/8) + (3)2(1/4) = 4

∴ σ2 = E[Y 2]− µ2 = 4− (1.75)2 = 0.9275

and then
σ = +

√
σ2 =

√
0.9375 = 0.97

J

EXAMPLE 2.31

The manager of an industrial plant is planning to buy a new machine of either type A or type B. If t denotes the
number of hours of daily operation, the number of daily repairs Y1 required to maintain a machine of type A is
a random variable with mean and variance both equal to 0.10t. The number of daily repairs Y2 for a machine
of type B is a random variable with mean and variance both equal to 0.12t. The daily cost of operating A is
CA(t) = 10t + 30Y 2

1 ; for B it is CB(t) = 8t + 30Y 2
2 . Assume that the repairs take negligible time and that each

night the machines are tuned so that they operate essentially like new machines at the start of the next day. Which
machine minimizes the expected daily cost if a workday consists of (a) 10 hours and (b) 20 hours?
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Solution. The expected daily cost for A is

E[CA(t)] = E[10t+ 30Y 2
1 ] = 10t+ 30E[Y 2

1 ]

= 10t+ 30{V ar(Y1) + (E[Y1])2} = 10t+ 30[0.10t+ (0.10t)2]

= 13t+ 0.3t2.

In this calculation, we used the known values for V ar(Y1) and E(Y1) and the fact that V ar(Y1) = E(Y 2
1 ) − [E(Y1)]2

to obtain that E(Y 2
1 ) = V ar(Y1) + [E(Y1)]2 = 0.10t+ (0.10t)2. Similarly,

E[CB(t)] = E[8t+ 30Y 2
2 ] = 8t+ 30E[Y 2

2 ]

= 8t+ 30V (Y2) + (E[Y2])2 = 8t+ 30[0.12t+ (0.12t)2]

= 11.6t+ 0.432t2.

Thus, for scenario (a) where t = 10,

E[CA(10)] = 160 and E[CB(10)] = 159.2,

which results in the choice of machine B.
For scenario (b), t = 20 and

E[CA(20)] = 380 and E[CB(20)] = 404.8,

resulting in the choice of machine A.
In conclusion, machines of type B are more economical for short time periods because of their smaller hourly operating

cost. For long time periods, however, machines of type A are more economical because they tend to be repaired less
frequently. J

EXAMPLE 2.32

A retailer for a petroleum product sells a random amount X each day. Suppose that X , measured in thousands of
gallons, has the probability density function f(x) = 3

8x
2, 0 ≤ x ≤ 2. The retailer’s profit turns out to be 100$for

each 1000 gallons sold if X ≤ 1 and 40$extra per 1000 gallons if X > 1. Find the retailer’s expected profit for any
given day.

Solution. Let p(x) denote the retailer’s daily profit. Then

p(x) =

{
100X, 0 ≤ X ≤ 1,

140X, 1 ≤ X ≤ 2.

We want to find expected profit; by definition, the expectation is:

E[p(X)] =

∫
x

p(x)f(x)dx =

∫ 1

0

100x

[
3

8
x2

]
dx+

∫ 2

1

140x

[
3

8
x2

]
dx

=

[
300

(8)(4)
x4

]1

0

+

[
420

(8)(4)
x4

]2

1

= 206.25

Thus, the retailer can expect a profit of 206.25$on the daily sale of this particular product. J
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EXAMPLE 2.33

Find the mean and variance, if exist, for each of the following distributions, with pdf’s:

1. f(x) = x
15 , x = 1, 2, 3, 4, 5.

2. f(x) = 1
2 (x+ 1), −1 < x < 1.

3. f(x) = x−2, 1 < x <∞.

4. f(x) = e−x, 0 < x <∞.

5. f(x) = 3
8x

2, 0 ≤ x ≤ 2

Solution.

1.

µ = E[X] =
∑
x

xf(x) =

5∑
x=1

x
x

15
=

1

15
(12 + 22 + 32 + 42 + 52) =

11

3
.

E[X2] =
∑
x

x2f(x) =

5∑
x=1

x2 x

15
=

1

15
(13 + 23 + 33 + 43 + 53) = 15.

σ2 = V ar(X) = E[X2]− µ2 = 15−
(

11

3

)2

= 15− 121

9
=

14

9
.

2.

µ = E[X] =

∫
x

xf(x)dx =

∫ 1

−1

x
1

2
(x+ 1)dx =

1

2

[
x3

3
+
x2

2

]1

−1

=
1

2

[(
1

3
+

1

2

)
−
(
−1

3
+

1

2

)]
=

1

3
.

E[X2] =

∫
x

x2f(x)dx =

∫ 1

−1

x
1

2
(x+ 1)dx =

1

2

[
x4

4
+
x3

3

]1

−1

=
1

3
.

σ2 = V ar(X) = E[X2]− µ2 =
1

3
− 1

9
=

2

9
.

3.

µ = E[X] =

∫
x

xf(x)dx =

∫ ∞
1

xx−2dx =

∫ ∞
1

1

x
dx = lnx

∣∣∣∞
1

= ln∞− ln 1 =∞− 0 =∞.

Therefore, the mean µ does not exist, hence the variance σ2 does not exist neither.

4.

µ = E[X] =

∫
x

xf(x)dx =

∫ ∞
0

xe−xdx = −xe−x − e−x
∣∣∣∞
0

= (0− 0)− (0− 1) = 1.

E[X2] =

∫
x

x2f(x)dx =

∫ ∞
0

xe−xdx = −x2e−x − 2xe−x − 2e−x
∣∣∣∞
0

= 2.

σ2 = E[X2]− µ2 = 2− (1)2 = 1.

5.

µ = E[X] =

∫ ∞
−∞

xf(x)dx =

∫ 2

0

x
3

8
x2dx =

3

8

x4

4

∣∣∣∣∣
2

0

= 1.5.
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E[X2] =

∫ ∞
−∞

x2f(x)dx =

∫ 2

0

x2 3

8
x2dx =

3

8

x5

5

∣∣∣∣∣
2

0

= 2.4

σ2 = V ar(X) = E[X2]− (E[X])2 = 2.4− (1.5)2 = 0.15

J

EXAMPLE 2.34

Let the r.v X has a pdf f(x) =
(

1
2

)x
, x = 1, 2, 3, . . . , then:

1. Find the mgf of X .

2. Evaluate the mean and variance of X using the mgf.

Solution.

1. The mgf M(t) is the expectation of the function etX , then

M(t) = E[etX ] =
∑
x

etxf(x) =

∞∑
x=1

etx
(

1

2

)x
=

∞∑
x=1

(
et

2

)x
=
et

2
+

(
et

2

)2

+

(
et

2

)3

+ · · · = (et/2)

1− (et/2)

∴M(t) =
et

2− et
, t 6= ln 2.

2. Check M(0) = e0

2−e0 = 1
2−1 = 1. now

M ′(t) =
(2− et)et − et(−et)

(2− et)2
=

2et − e2t + e2t

(2− et)2
=

2et

(2− et)2

M ′(0) =
2e0

(2− e0)2
=

2

(2− 1)2
= 2 = µ

and that

M ′′(t) =
(2− et)22et − 2et2(2− et)(−et)

(2− et)4
=

(2− et)2et + 4e2t

(2− et)3

M ′′(0) =
(2− 1)2 + 4

(2− 1)3
= 6 = E[X2]

then
σ2 = E[X2]− µ2 = 6− 4 = 2.

or, we consider the function ξ(t) = lnM(t) = t− ln(2− et), then

ξ′(t) = 1 +
et

2− et
⇒ ξ′(0) = 1 +

1

2− 1
= 2 = µ

and

ξ′′(t) =
(2− et)et − et(−et)

(2− et)2
=

2et

(2− et)2
⇒ ξ′′(0) =

2

(2− 1)2
= 2 = σ2.

J
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EXAMPLE 2.35

Find the mgf of a r.v X that has a pdf f(x) = xe−x, 0 < x <∞, then evaluate the mean and variance of X .

Solution. The mgf od r.v X is the expectation of etX ,

M(t) = E[etX ] =

∫
x

etxf(x)dx =

∫ ∞
0

etxxe−xdx =

∫ ∞
0

xe−(1−t)xdx =

[
−xe

−(1−t)x

1− t
− e−(1−t)x

(1− t)2

]∞
0

Therefore,

M(t) =
1

(1− t)2
, t < 1.

In order to evaluate µ and σ2, we have the mgf M(t) = (1− t)−2,

M ′(t) = 2(1− t)−3 ⇒M ′(0) = 2 = µ

M ′′(t) = 6(1− t)−4 ⇒M ′′(0) = 6 = E[X2]

∴ σ2 = E[X2]− µ2 = 6− 4 = 2

or, we consider the function ξ(t) = lnM(t) = −2 ln(1− t), then

ξ′(t) =
2

1− t
⇒ ξ′(0) = 2 = µ

ξ′′(t) = 2(1− t)−2 ⇒ ξ′′(0) = 2 = σ2

J

EXAMPLE 2.36

A manufacturing company ships its product in two different sizes of truck trailers. Each shipment is made in a trailer
with dimensions 8 feet × 10 feet × 30 feet or 8 feet × 10 feet × 40 feet. If 30% of its shipments are made by using
30-foot trailers and 70% by using 40-foot trailers, find the mean volume shipped per trailer load. (Assume that the
trailers are always full.)

Solution. Assume that the volume of the 30-foot trailers is v1 and the 40-foot trailers is v2, then:

v1 = 8× 10× 30 = 2400 feet3.

v2 = 8× 10× 40 = 3200 feet3.

since we have the probability of shipping throughout v1 and v2 are:

p(v1) = 30% =
3

10
p(v2) = 70% =

7

10
.

Therefore, the expected shipping volume is:

E[V ] =

2∑
i=1

vip(vi) = 2400× 3

10
+ 3200× 7

10
= 2990 feet3.

J
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EXAMPLE 2.37

In a gambling game a person draws a single card from an ordinary 52-card playing deck. A person is paid 15$for
drawing a jack or a queen and 5$ for drawing a king or an ace. A person who draws any other card pays 4$. If a
person plays this game, what is the expected gain?

Solution. Let the r.v X represents the outcome of the draw. Then, the player gain could be represented as:

g =


15, x = J,Q

5, x = K,A

−4, x = 2, 3, 4, 5, 6, 7, 8, 9, 10

Since we have
(

52
4

)
= 1

13 ways of drawing a card, then the probability of drawing any number or shape is equal to 1
13 ,

i.e:

Probability distribution of X
x 2 3 . . . 10 J Q K A

p(x) 1/13 1/13 . . . 1/13 1/13 1/13 1/13 1/13

Then, the expected gain of the played is calculated by:

E[G] =
∑

gp(x) =

[
9

(
(−4)× 1

13

)
+ 2

(
(5)× 1

13

)
+ 2

(
(15)× 1

13

)]
=
−36

13
+

10

13
+

30

13
=

4

13
= 0.307.

J

EXAMPLE 2.38

A builder of houses needs to order some supplies that have a waiting time Y for delivery, with a continuous uniform
distribution over the interval from 1 to 4 days

(
p(y) = 1

3 , 1 ≤ y ≤ 4
)
. Because he can get by without them for 2

days, the cost of the delay is fixed at 100$ for any waiting time up to 2 days. After 2 days, however, the cost of the
delay is 100$ + 20$ per day (prorated) for each additional day. That is, if the waiting time is 3.5 days, the cost of
the delay is 100$ + 20$(1.5) = 130$. Find the expected value of the builder’s cost due to waiting for supplies.

Solution. Assume that the cost of waiting the supplies Wc, and Y is the r.v that represents the number of waiting days,
then:

Wc =

{
100, 1 ≤ y ≤ 2

100 + 20(y − 2), 2 < y ≤ 4

Therefore, expected value of the builder’s cost due to waiting for supplies is

E[Wc] =

∫
Wcp(y)dy =

∫ 2

1

100
1

3
dy +

∫ 4

2

(100 + 20(y − 2))
1

3
dy

=
100

3
y
∣∣∣2
1

+
100

3
y
∣∣∣4
2

+
20

3

[
y2

2
− 2y

]4

2

=
100

3
+

200

3
+

40

3
=

340

3
= 113.33

J



32 DISTRIBUTION OF RANDOM VARIABLES

2.4.2 Tchebyshev’s Inequality

In order to find the upper and lower bounds for certain probability, we will need to prove some theorems. These bounds
are not necessarily close to the exact probability.

Theorem: Let u(X) be a non-negative function of a r.v X whose pdf f(x), −∞ < x <∞. If E[u(X)] exist, then for
all positive constant c,

Pr[u(X) ≥ c] ≤ E[u(X)]

c
.

Theorem: Tchebyshev Inequality: Let X be a r.v with mean µ and finite variance σ2. Then, for any constant k > 0,

Pr
(
|X − µ| < kσ

)
≥ 1− 1

k2
, or Pr

(
|X − µ| ≥ kσ

)
≤ 1

k2

Two important aspects of this result should be pointed out. First, the result applies for any probability distribution.
Second, the results of the theorem are very conservative in the sense that the actual probability that X is in the interval
µ± kσ usually exceeds the lower bound for the probability, 1− 1/k2, by a considerable amount.

Proof : Consider the previous theorem by taking u(X) = (X − µ)2 and c2 = k2σ2, then

Pr
[
(X − µ)2 ≥ k2σ2

]
≤
E
[
(X − µ)2

]
k2σ2

=
σ2

k2σ2
=

1

k2

Since (x− µ)2 ≥ k2σ2 ⇔ |x− µ| ≥ kσ. It follows,

Pr
(
|X − µ| ≥ kσ

)
≤ 1

k2

EXAMPLE 2.39

Let the r.v X has a pdf f(x) = 1
2
√

3
, −
√

3 < x <
√

3. Find The exact value of Pr
(
|X − µ| ≥ 3

2σ
)

and
Pr
(
|X − µ| ≥ 2σ

)
, and then compare those results with their upper bounds.

Solution. First of all, we need to find the mean µ and the variance σ2. Then

µ = E[X] =

∫
x

xf(x)dx =
1

2
√

3

∫ √3

−
√

3

xdx = 0.

E[X2] =

∫
x

x2f(x)dx =
1

2
√

3

∫ √3

−
√

3

x2dx = 1.

σ2 = E[X2]− µ2 = 1⇒ σ = 1.

The exact value of probability

Pr
(
|X − µ| ≥ 3

2
σ
)

= Pr
(
|X| ≥ 3

2

)
= 1− Pr

(
|X| < 3

2

)
= 1− Pr

(
− 3

2
< X <

3

2

)
= 1−

∫ 3/2

−3/2

f(x)dx = 1− 1

2
√

3

∫ 3/2

−3/2

dx = 1−
√

3

2
= 0.134

To compare with the probability upper bound, we will use Tchebyshev inequality, to find this upper bound for probability
Pr
(
|X − µ| ≥ 3

2σ
)

Pr
(
|X| ≥ 3

2

)
≤
(

3

2

)2

=
4

9
= 0.44.
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It is clear that the exact probability (0.134) is less than the upper bound (0.44).
For the next part, we do the same. The exact value of probability

Pr
(
|X − µ| ≥ 2σ

)
= Pr

(
|X| ≥ 2

)
= 1− Pr

(
|X| < 2

)
= 1− Pr

(
− 2 < X < 2

)
= 1−

∫ 2

−2

f(x)dx = 1−

[∫ √3

−2

f(x)dx+

∫ √3

−
√

3

f(x)dx+

∫ 2

√
3

f(x)dx

]
= 1− (0 + 1 + 0) = 0

To compare with the probability upper bound, we will use Tchebyshev inequality, to find this upper bound for probability
Pr
(
|X − µ| ≥ 2σ

)
Pr
(
|X| ≥ 2

)
≤ 1

22
= 0.25.

It is clear that the exact probability (0) is less than the upper bound (0.25). J

Note: We may have the mean µ and variance σ2 for a distribution whose pdf is not available for some reason. In this
case, to find a certain probability, we use Tchebyshev inequality to find the upper or lower bound for this probability.

EXAMPLE 2.40

Let the r.v X has mean µ = 3 and variance σ2 = 4. Use Tchebyshev inequality to determine a lower bound for
Pr(−2 < X < 8).

Solution. To use the Tchebyshev inequality, we need to get to the form Pr
[
|X − µ| < kσ

]
= 1− 1

k2 . Then

Pr
(
− 2 < X < 8

)
= Pr

(
− 2− 3 < X − µ < 8− 3

)
= Pr

(
− 5 < X − µ < 5

)
= Pr

(
|X − µ| < 5

)
= Pr

(
|X − µ| < 5

2
σ
)
≥ 1−

(
2

5

)2

= 1− 4

25
=

21

25
= 0.85

J

EXAMPLE 2.41

The number of customers per day at a sales counter, Y , has been observed for a long period of time and found to
have mean 20 and standard deviation 2. The probability distribution of Y is not known. What can be said about the
probability that, tomorrow, Y will be greater than 16 but less than 24?

Solution. We want to find Pr(16 < Y < 24). From Tchebyshev inequality we know, for any k ≥ 0, Pr(|Y − µ| <
kσ) ≥ 1− 1/k2, or

Pr
[
(µ− kσ) < Y < (µ+ kσ)

]
≥ 1− 1

k2
.

Because µ = 20 and σ = 2, it follows that µ− kσ = 16 and µ+ kσ = 24 if k = 2. Thus

Pr
(
16 < Y < 24

)
= Pr

(
µ− 2σ < Y < µ+ 2σ

)
≥ 1− 1

22
=

3

4
.

In other words, tomorrow’s customer total will be between 16 and 24 with a fairly high probability (at least 3/4).
Notice that if σ were 1, k would be 4, and

Pr
(
16 < Y < 24

)
= Pr

(
µ− 4σ < Y < µ+ 4σ

)
≥ 1− 1

42
=

15

16
.

Thus, the value of σ has considerable effect on probabilities associated with intervals. J
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EXAMPLE 2.42

Suppose that experience has shown that the length of time T (in minutes) required to conduct a periodic maintenance
check on a dictating machine follows a gamma distribution with mean µ = 6.2 and variance σ2 = 12.4. A new
maintenance worker takes 22.5 minutes to check the machine. Does this length of time to perform a maintenance
check disagree with prior experience?

Solution. We know that µ = 6.2 and σ2 = 12.4⇒ σ =
√

12.4 = 3.52. We need to evaluate Pr(T ≥ 22.5), then

Pr
(
T − µ ≥ 22.5− µ

)
. Notice that t = 22.5 minutes exceeds the mean µ = 6.2 minutes by 16.3 minutes, or k = 16.3/3.52 = 4.63 standard
deviations. Then from Tchebysheff’s theorem,

Pr
(
|T − 6.2| ≥ 16.3

)
= Pr

(
|T − µ| ≥ 4.63σ

)
≤ 1

(4.63)2
= 0.0466.

This probability is based on the assumption that the distribution of maintenance times has not changed from prior ex-
perience. Then, observing that Pr(T ≥ 22.5) is small, we must conclude either that our new maintenance worker has
generated by chance a lengthy maintenance time that occurs with low probability or that the new worker is somewhat
slower than preceding ones. Considering the low probability for Pr(T ≥ 22.5), we favour the latter view. J



CHAPTER 3

SOME SPECIAL MATHEMATICAL DISTRIBUTIONS

As stated in Chapter ??, a random variable is a real-valued function defined over a sample space. Consequently, a random
variable can be used to identify numerical events that are of interest in an experiment. For any r.v, we can define many
distribution functions in order to be able to calculate probabilities for certain events. In this chapter, we will introduce
some special probability distribution for some discrete and continuous r.v’s.

3.1 Discrete Distributions

In this section, some of the most important and popular distributions for discrete r.v are presented. Both the pdf and cdf
is derived and some important properties and mathematical expectation for these distribution are obtained.

3.1.1 Binomial Distribution

Some experiments consist of the observation of a sequence of identical and independent trials, each of which can result in
one of two outcomes.For instance, each item leaving a manufacturing production line is either defective or non-defective.
Each shot in a sequence of firings at a target can result in a hit or a miss, and each of n persons questioned prior to a local
election either favors candidate Jones or does not. In this section we are concerned with experiments, known as binomial
experiments, that exhibit the following characteristics.

Definition: A binomial experiment possesses the following properties:

1. The experiment consists of a fixed number, n, of identical trials.

2. Each trial results in one of two outcomes: success, S, or failure, F .

Please enter \offprintinfo{(Title, Edition)}{(Author)}
at the beginning of your document.
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3. The probability of success on a single trial is equal to some value p and remains the same from trial to trial. The
probability of a failure is equal to q = (1− p).

4. The trials are independent.

5. The random variable of interest, X , the number of successes observed during the n trials.

Determining whether a particular experiment is a binomial experiment requires examining the experiment for each
of the characteristics just listed. Notice that the random variable of interest is the number of successes observed in the
n trials. It is important to realize that a success is not necessarily “good” in the everyday sense of the word. In our
discussions, success is merely a name for one of the two possible outcomes on a single trial of an experiment.

Definition: A random variable X is said to have a binomial distribution based on n trials with success probability p if
and only if

f(x) =

(
n

x

)
pxqn−x, x = 0, 1, 2, . . . , n and 0 ≤ p ≤ 1,

and is denoted by X ∼ B(n, p).

The term binomial experiment derives from the fact each trial results in one of two possible outcomes and that the
probabilities p(y), y = 0, 1, 2, . . . , n, are terms of the binomial expansion

(p+ q)n =

(
n

0

)
pnq0 +

(
n

1

)
pn−1q1 +

(
n

2

)
pn−2q2 + · · ·+

(
n

n

)
p0qn.

Now, in order to verify that f(x) is a valid pdf, one can easily prove that

1. f(x) > 0, ∀x ∈ A = {x : x = 0, 1, 2, . . . , n}.

2. Since f(x) satisfies the binomial expansion, and that p+ q = 1, then∑
x

f(x) =

n∑
x=0

(
n

x

)
pxqn−x = (p+ q)n = 1n = 1.

The binomial probability distribution has many applications because the binomial experiment occurs in sampling for
defectives in industrial quality control, in the sampling of consumer preference or voting populations, and in many other
physical situations. We will illustrate with a few examples.

EXAMPLE 3.1

Suppose that a lot of 5000 electrical fuses contains 5% defectives. If a sample of 5 fuses is tested, find the probability
of observing at least one defective.

Solution. It is reasonable to assume thatX , the number of defectives observed, has an approximate binomial distribution
with p = 0.5, and q = 0.95. Thus,

Pr(at least one defective) = 1− f(0) = 1−
(

5

0

)
p0q5

= 1− (0.95)5 = 1− 0.774 = 0.226

Notice that there is a fairly large chance of seeing at least one defective, even though the sample is quite small. J

The Cumulative Distribution Function: The cdf of X that has a binomial pdf is defined as:

F (x) = Pr(X ≤ x) =

x∑
τ=0

f(τ) =

x∑
τ=0

(
n

τ

)
pτqn−τ .
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In practice, it is not easy or convenient to use the above form of the cfd to calculate the probability at certain point F (x).
Instead, we use Table 1 (p: 839-841)

EXAMPLE 3.2

The large lot of electrical fuses of the last example is supposed to contain only 5% defectives. If n = 20 fuses are
randomly sampled from this lot, find the probability that at least four defectives will be observed.

Solution. LettingX denote the number of defectives in the sample, we assume the binomial model forX , with p = 0.05.
Thus,

Pr(X ≥ 4) = 1− Pr(X ≤ 3),

and using Table 1, we obtain

Pr(X ≤ 3) =

3∑
x=0

f(x) = 0.984

The value 0.984 is found in the table labelled n = 20 in Table 1. Then, the probability of getting at least 4 defective fuses
is

Pr(X ≥ 4) = 1− 0.984 = 0.016.

This probability is quite small. If we did indeed observe more than three defectives out of 20 fuses, we might suspect
that the reported 5% defect rate is erroneous. J

The Moment Generating Function: The mgf of X could be evaluated as:

M(t) = E
[
etX
]

=
∑
x

etxf(x) =

n∑
x=0

etx
(
n

x

)
pxqn−x =

n∑
x=0

(
n

x

)(
pet
)x
qn−x

=
(
pet + q

)n
, −∞ < t <∞

Mean and Variance: Let X be a binomial random variable based on n trials and success probability p. Then

µ = E[X] = np and σ2 = V ar(X) = npq.

The derivation of the mean and variance could be done in three different ways; (1) by the direct approach of E[X], (2)
differentiating the mgf M(t), or (3) the differentiation of the function ln(M(t)). We will use the second way to evaluate
the mean and variance as:

M ′(t) = npet
(
pet + q

)n−1 ⇒M ′(0) = np = E[X] = µ.

M ′′(t) = np
[
(n− 1)pe2t

(
pet + q

)n−2
+ et

(
pet + q

)n−1
]

M ′′(0) = np[(n− 1)p+ 1] = np(np− p+ 1) = np(np+ q) = n2p2 + npq = E[X2]

∴ V ar(X) = σ2 = E[X2]− µ2 = n2p2 + npq − n2p2 = npq
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EXAMPLE 3.3

Let the r.v X ∼ b(7, 0.5). Write down the pdf and mgf of X . Then find µ and σ2. Evaluate Pr(X ≤ 2),
Pr(3 < X ≤ 5), Pr(X = 5).

Solution. Since X ∼ b(7, 0.5), then the pdf of X

f(x) = Pr(X = x) =

(
7

x

)(
1

2

)x(
1

2

)7−x

=

(
7

x

)(
1

2

)7

, x = 0, 1, 2, . . . , 7

The mgf of X

M(t) =

(
1

2
et +

1

2

)7

Mean and Variance: µ = np = 7
2 , and σ2 = npq = 7

4 .

Pr(X ≤ 2) = 0.2266

Pr(3 < X ≤ 5) = Pr(X ≤ 5)− Pr(X < 3) = Pr(X ≤ 5)− Pr(X ≤ 2) = 0.9375− 0.2266 = 0.7109.

Pr(X = 5) = Pr(X ≤ 5)− Pr(X ≤ 4) = 0.9375− 0.7734 = 0.1641.
J

EXAMPLE 3.4

A die is tossed 5 times. What is the probability of obtaining exactly three two’s?

Solution. The probability of getting two’s from a die tossing is p = 1
6 . Then, the probability of getting anything

else is q = 5
6 . If we assume that a r.v X represents the number of two’s in 5 tosses, then X ∼ b(5, 1

6 ) with pdf
f(x) =

(
5
x

) (
1
6

)x ( 5
6

)5−x
, x = 0, 1, 2, 3, 4, 5. Therefore:

Pr(X = 3) = f(3) =

(
5

3

)(
1

6

)3(
5

6

)2

= 0.0322

. J

EXAMPLE 3.5

Let the r.v X ∼ b(7, p) and that Pr(X = 3) = Pr(X = 4). Find µ and σ2, and then evaluate Pr(X = 3).

Solution. Since X has a binomial pdf, f(x) = Pr(X = x) =
(

7
x

)
pxq7−x, x = 0, 1, . . . , 7 and since we have Pr(X =

3) = Pr(X = 4), then

f(3) = f(4)⇒
(

7

3

)
p3q4 =

(
7

4

)
p4q3 ⇒ p = q ⇒ p = 1− p⇒ p =

1

2
.

Therefore,

µ = np =
7

2
and σ2 = npq =

7

4
.

Then,
Pr(X = 3) = Pr(x ≤ 3)− Pr(x ≤ 2) = 0.5− 0.2266 = 0.2734.

J
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3.1.2 The Geometric Distribution

The random variable with the geometric probability distribution is associated with an experiment that shares some of the
characteristics of a binomial experiment. This experiment also involves identical and independent trials, each of which
can result in one of two outcomes: success or failure. The probability of success is equal to p and is constant from trial to
trial. However, instead of the number of successes that occur in n trials, the geometric random variable X is the number
of the trial on which the first success occurs. Thus, the experiment consists of a series of trials that concludes with the
first success. Consequently, the experiment could end with the first trial if a success is observed on the very first trial, or
the experiment could go on indefinitely.

Definition: A random variable X is said to have a geometric probability distribution if

f(x) = qx−1p, x = 1, 2, 3, . . . , 0 ≤ p ≤ 1,

or
f(x) = qxp, x = 0, 1, 2, . . . , 0 ≤ p ≤ 1,

We denote to X as X ∼ Geo(p).

To prove that f(x) is a valid pdf,

1. f(x) > 0, ∀x ∈ A = {x : x = 1, 2, . . . }.

2. We need to evaluate
∑
x f(x), then

∞∑
x=0

qxp = p
(
1 + q + q2 + q3 + . . .

)
= p

1

1− q
= p

1

p
= 1

The geometric probability distribution is often used to model distributions of lengths of waiting times.

EXAMPLE 3.6

Suppose that the probability of engine malfunction during any one-hour period is p = 0.02. Find the probability that
a given engine will survive two hours.

Solution. Letting Y denote the number of one-hour intervals until the first malfunction, we have

Pr(survive two hours) = Pr(Y ≥ 3) =

∞∑
y=3

f(y).

Because
∑∞
y=1 f(y) = 1,

Pr(survive two hours) = 1−
2∑
y=1

f(y)

= 1− p− qp = 1− 0.02− (0.98)(0.02) = 0.9604.

J

The Cumulative Distribution Function: The cdf of r.v X which has a Geometric pdf is:

F (x) = Pr(X ≤ x) =

x∑
τ=0

f(τ) =

x∑
τ=0

qτp = p(1 + q + q2 + q3 + · · ·+ qx)

=


0, x < 0

1− qx+1, 0 ≤ x <∞
1, x =∞
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The Moment Generating Function: We can obtain the mgf of r.v X by evaluating the expectation E
[
etX
]
, that is

M(t) = E
[
etX
]

=
∑
x

etxf(x) =

∞∑
x=0

etXqxp = p
[
1 + (qet) + (qet)2 + . . .

]
=

p

1− qet
, t 6= ln

(
1

q

)
.

Mean and Variance: If X is a r.v with a geometric distribution, then we define the mean µ and variance σ2 as

µ = E[X] =
q

p
and σ2 = V ar(X) =

1− p
p2

.

As it was mention previously, we can prove that in three different ways. This time, we will use the property of
ψ(t) = ln(M(t)). Hence ψ(t) = lnM(t) = ln p− ln(1− qet), and the derivative of of ψ gives

ψ′(t) =
qet

1− qet
⇒ ψ′(0) =

q

1− q
=
q

p
= µ

and,

ψ′′(t) =
(1− qet)qet − (qet)(qet)

(1− qet)2
⇒ ψ′′(0) =

(1− q)(q) + q2

(1− q)2
=

q

p2
= σ2

EXAMPLE 3.7

Let the r.v X ∼ Geo( 2
3 ). Answer the following:

1. Write down the pdf, cdf and mgf of X .

2. Find µ and σ2.

3. Evaluate Pr(X ≥ 3) by using both the pdf and cdf.

4. Evaluate Pr(X ≥ 5|X ≥ 2).

Solution. 1. pdf: f(x) =
(

2
3

) (
1
3

)x
, x = 0, 1, 2, . . . .

cdf:

F (x) =


0, x < 0

1−
(

1
3

)x+1
, 0 ≤ x <∞

1, x =∞

mgf: M(t) =
2/3

1− 1
3e
t

=
2

3− et
.

2. µ =
q

p
=

1/3

2/3
=

1

2
and σ2 =

q

p2
=

1/3

4/9
=

3

2
.

3. Using pdf: Pr(X ≥ 3) = 1− Pr(X < 3) = 1− Pr(X ≤ 2), then

Pr(X ≥ 3) = 1−
2∑

x=0

f(x) = 1− [f(0) + f(1) + f(2)]1− 2

3

[
1 +

1

3
+

1

9

]
=

1

27
.
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Using cdf: Pr(X ≥ 3) = 1− Pr(X ≤ 2) = 1− F (2) = 1− 1 +
(

1
3

)3
= 1

27 .

4. According to the conditional probability,

Pr(X ≥ 5|X ≥ 2) =
Pr(X ≥ 5 ∩X ≥ 2)

Pr(X ≥ 2)
=

Pr(X ≥ 5)

Pr(X ≥ 5)
=

1− Pr(X ≤ 4)

1− Pr(X ≤ 1)
=

(1/3)5

(1/3)2
=

1

27
.

J

3.1.3 Negative Binomial Distribution

A random variable with a negative binomial distribution originates from a context much like the one that yields the
geometric distribution. Again, we focus on independent and identical trials, each of which results in one of two outcomes:
success or failure. The probability p of success stays the same from trial to trial. The geometric distribution handles the
case where we are interested in the number of the trial on which the first success occurs. What if we are interested in
knowing the number of the trial on which the second, third, or fourth success occurs? The distribution that applies to the
random variable X equal to the number of the trial on which the rth success occurs (r = 2, 3, 4, etc.) is the negative
binomial distribution.

Definition: A r.v X is said to have negative binomial distribution, denoted by X ∼ Nb(r, p), Is X has the pdf f(x),
such that:

f(x) =

(
x− 1

r − 1

)
prqx−r, x = r, r + 1, r + 2, . . . , 0 ≤ p ≤ 1.

Or

f(x) =

(
x+ r − 1

x

)
prqx, x = 0, 1, 2, . . . , 0 ≤ p ≤ 1.

Note: The Maclaurian’s series expansion of:

(1− a)−r =1 + ra+
r(r + 1)

2!
a2 +

r(r + 1)(r + 2)

3!
a3 + . . .

=

(
r − 1

0

)
a0 +

(
r

1

)
a1 +

(
r + 1

2

)
a2 +

(
r + 2

3

)
a3 + . . .

=

∞∑
x=0

(
x+ r − 1

x

)
ax, r = 1, 2, 3, . . .

In order to verify that f(x) is a valid pdf, we note that

1. f(x) > 0, ∀x ∈ A = {x : x = 0, 1, 2, . . . }.

2.
∑
x
f(x) =

∞∑
x=0

(
x+r−1
x

)
prqx = pr

∞∑
x=0

(
x+r−1
x

)
qx = pr(1− q)−r = 1.

EXAMPLE 3.8

A geological study indicates that an exploratory oil well drilled in a particular region should strike oil with probability
0.2. Find the probability that the third oil strike comes on the fifth well drilled.

Solution. Assuming independent drilling and probability 0.2 of striking oil with any one well, let X denote the number
of the trial on which the third oil strike occurs. Then it is reasonable to assume thatX has a negative binomial distribution
with p = 0.2. Because we are interested in r = 3 and x = 5,

Pr(X = 5) = f(5) =

(
4

2

)
(0.2)3(0.8)2 = 6(0.008)(0.64) = 0.0307.
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J

The Moment Generating Function: The mgf of X could be presented as:

M(t) = E
[
etX
]

=

∞∑
x=0

etx
(
x+ r − 1

x

)
prqx = pr

∞∑
x=0

(
x+ r − 1

x

)
(qet)x = pr(1− qet)−r

M(t) =

(
p

1− qet

)r
, t 6= − ln q.

Mean and Variance: If X is a random variable with a negative binomial distribution,

µ = E[X] =
r

p
and σ2 = V ar(X) =

rq

p2

EXAMPLE 3.9

A large stockpile of used pumps contains20% that are in need of repair. A maintenance worker is sent to the stockpile
with three repair kits. She selects pumps at random and tests them one at a time. If the pump works, she sets it aside
for future use. However, if the pump does not work, she uses one of her repair kits on it. Suppose that it takes 10
minutes to test a pump that is in working condition and 30 minutes to test and repair a pump that does not work.
Find the mean and variance of the total time it takes the maintenance worker to use her three repair kits.

Solution. Let X denote the number of the trial on which the third nonfunctioning pump is found. It follows that X has a
negative binomial distribution with p = 0.2. Thus, E(X) = 3/(0.2) = 15 and V ar(X) = 3(0.8)/(0.2)2 = 60. Because
it takes an additional 20 minutes to repair each defective pump, the total time necessary to use the three kits is

T = 10X + 3(20).

Therefore, the expected time is,
E[T ] = 10E[X] + 60 = 10(15) + 60 = 210,

and
V ar(T ) = 102V ar(X) = (100)(60) = 6000.

Thus, the total time necessary to use all three kits has mean 210 and standard deviation
√

6000 = 77.46.
J

3.1.4 The Hypergeometric Probability Distribution

Suppose that a population contains a finite number N of elements that possess one of two characteristics. Thus, r of the
elements might be red and b = N − r, black. A sample of n elements is randomly selected from the population, and the
random variable of interest is X , the number of red elements in the sample. This random variable has what is known as
the hypergeometric probability distribution. For example, the number of workers who are women, X , in Example ?? has
the hypergeometric distribution.

Definition: A random variable X is said to have a hypergeometric probability distribution if and only if

f(x) =

(
r
x

)(
N−r
n−x

)(
N
n

) , x = 0, 1, 2, . . . , n and x ≤ r, n− y ≤ N − r.

1. We can easily notice that f(x) ≥ 0,∀x, since
(
a
b

)
> 0, ifa > b, and

(
a
b

)
= 0, if b > a.
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2. Notice that:
n∑
i=0

(
r

i

)(
N − r
n− i

)
=

(
N

n

)
.

Therefore,
n∑
x=0

(
r
x

)(
N−r
n−x

)(
N
n

) =

(
N
n

)(
N
n

) = 1.

This verifies that f(x) is a valid pdf of the r.v X .

EXAMPLE 3.10

An important problem encountered by personnel directors and others faced with the selection of the best in a finite
set of elements is exemplified by the following scenario. From a group of 20 Ph.D. engineers, 10 are randomly
selected for employment. What is the probability that the 10 selected include all the 5 best engineers in the group of
20?

Solution. For this example N = 20, n = 10, and r = 5. That is, there are only 5 in the set of 5 best engineers, and we
seek the probability that Y = 5, where Y denotes the number of best engineers among the ten selected. Then

f(y) =

(
5
5

)(
15
5

)(
20
10

) =

(
15!

5!10!

)(
10!10!

20!

)
=

21

1292
= 0.0162.

J

Mean and Variance: If X is a random variable with a hypergeometric distribution,

µ = E[X] =
nr

N
, and σ2 = V ar(X) = n

( r
N

)(N − r
N

)(
N − n
N − 1

)
.

EXAMPLE 3.11

An industrial product is shipped in lots of 20. Testing to determine whether an item is defective is costly, and hence
the manufacturer samples his production rather than using a 100% inspection plan. A sampling plan, constructed to
minimize the number of defectives shipped to customers, calls for sampling five items from each lot and rejecting
the lot if more than one defective is observed. (If the lot is rejected, each item in it is later tested.) If a lot contains
four defectives, what is the probability that it will be rejected? What is the expected number of defectives in the
sample of size 5? What is the variance of the number of defectives in the sample of size 5?

Solution. Let X equal the number of defectives in the sample. Then N = 20, r = 4, and n = 5. The lot will be rejected
if X = 2, 3, or 4. Then

Pr(rejecting the lot) = Pr(X ≥ 2) = f(2) + f(3) + f(4)

= 1− f(0)− f(1) = 1−
(

4
0

)(
16
5

)(
20
5

) −
(

4
1

)(
16
4

)(
20
4

)
= 1− 0.2817− 0.4694 = 0.2487

The mean and variance of the number of defectives in the sample of size 5 are

µ =
(5)(4)

20
= 1 and σ2 = 5

(
4

20

)(
20− 4

20

)(
20− 5

20− 1

)
= 0.632.

J
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3.1.5 The Poisson Distribution

The Poisson probability distribution often provides a good model for the probability distribution of the number X of
rare events that occur in space, time, volume, or any other dimension, where λ is the average value of X . Examples of
random variables with approximate Poisson distributions are the number of telephone calls handled by a switchboard in
a time interval, the number of radioactive particles that decay in a particular time period, the number of errors a typist
makes in typing a page, and the number of automobiles using a freeway access ramp in a ten-minute interval.

Definition: A random variable X is said to have a Poisson probability distribution if and only if

f(x) =
λx

x!
e−λ, x = 0, 1, 2, . . . , λ > 0,

and is denoted by X ∼ P (λ)

1. f(x) > 0,∀x.

2. Since eλ =
∑ ∞

lim
x=0

λx

x! , then

∑
x

f(x) =

∞∑
x=0

e−λ
λx

x!
= e−λ

∞∑
x=0

λx

x!
= e−λeλ = 1.

EXAMPLE 3.12

Suppose that a random system of police patrol is devised so that a patrol officer may visit a given beat location
X = 0, 1, 2, 3, . . . times per half-hour period, with each location being visited an average of once per time period.
Assume that X possesses, approximately, a Poisson probability distribution. Calculate the probability that the patrol
officer will miss a given location during a half-hour period. What is the probability that it will be visited once?
Twice? At least once?

Solution. For this example the time period is a half-hour, and the mean number of visits per half-hour interval is λ = 1.
Then

f(x) =
(1)xe−1

x!
=
e−1

x!
, x = 0, 1, 2, . . . .

The event that a given location is missed in a half-hour period corresponds to (X = 0), and

Pr(X = 0) = f(0) =
e−1

0!
= e−1 = 0.368.

Similarly,

Pr(X = 1) = f(1) =
e−1

1!
= e−1 = 0.368.

and

Pr(X = 2) = f(2) =
e−1

2!
=
e−1

2
= 0.184.

The probability that the location is visited at least once is the event (X ≥ 1). Then

Pr(X ≥ 1) =

∞∑
x=1

f(x) = 1− f(0) = 1− e−1 = 0.632.

J
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The Cumulative Distribution Function: The case in Poisson distribution is similar to the Binomial distribution. The cdf
of X is very complicated, as

F (x) = Pr(X ≤ x) =

x∑
τ=0

λτ

τ !
e−λ.

The approximated value of Piosson cdf could be found in tables (2).

The Moment Generating Function: The mgf of r.v X is:

M(t) = E
[
etX
]

=

∞∑
x=0

etx
λx

x!
e−λ = e−λ

∞∑
x=0

(λet)x

x!
= e−λeλe

t

M(t) = eλ(et−1)

Mean and Variance: If X is a r.v possessing a Poisson distribution with parameter λ, then

µ = E[X] = λ, and σ2 = V ar(X) = λ.

In order to prove that, set ψ(t) = lnM(t) = λ(et − 1). Then

ψ′(t) = λet ⇒ ψ′(0) = λe0 = λ = µ

ψ′′(t) = λet ⇒ ψ′′(0) = λe0 = λ = σ2

EXAMPLE 3.13

Let the r.v X ∼ P (2).Find µ and σ2. Evaluate Pr(X ≥ 1), Pr(2 ≤ X ≤ 5) and Pr(X = 3).

Solution. Since λ = 2, then: µ = σ2 = 2.

- Pr(X ≥ 1) = 1− Pr(X ≤ 0) = 1−
1∑

x=0
f(x) = 1− (f(0) + f(1)) = 1− 0.1353 = 0.8646.

- Pr(2 ≤ X ≤ 5) = F (5)− f(1) = 0.9834− 0.4060 = 0.5774.

- Pr(X = 3) = f(3) = e−2 23

3! = e−2 4
3 = 0.1804.

J

EXAMPLE 3.14

Industrial accidents occur according to a Poisson process with an average of three accidents per month. During the
last two months, ten accidents occurred. Does this number seem highly improbable if the mean number of accidents
per month, µ, is still equal to 3?

Solution. The number of accidents in two months, X , has a Poisson probability distribution with mean λ∗ = 2(3) = 6.
The probability that X is as large as 10 is

Pr(X ≥ 10) =

∞∑
x=10

6x

x!
e−6.

The tedious calculation required to find Pr(X ≥ 10) can be avoided by using Table 2,

Pr(X ≥ 10) = 1− Pr(X ≤ 9) = 1− 0.9161 = 0.0839
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It is not highly improbable to happen. J

Theorem: Let the r.v X ∼ b(n, p). For large n→∞ and small p→ 0. Then X could be approximated as
lim
n→∞

b(n, p) = P (λ), where λ = np.

EXAMPLE 3.15

Let the r.v X ∼ b(3000, 0.001). Find Pr(X = 5).

Solution. Since X ∼ b(n, p) with a large value of n = 3000 and small value of p = 0.001. Then according to the above
theorem, we can approximate that X ∼ λ, where λ = np = (3000)(0.001) = 3. Then:

Pr(X = 5) = Pr(X ≤ 5)− Pr(X ≤ 4) = 0.9161− 0.8153 = 0.1008.

J

3.2 Continuous Distribution

In this section, some of the most important and popular distributions for continuous r.v are presented. Both the pdf and
cdf is derived and some important properties and mathematical expectation for these distribution are obtained.

3.2.1 The Uniform Distribution

Suppose that a bus always arrives at a particular stop between 8:00 and 8:10 A.M. and that the probability that the bus
will arrive in any given subinterval of time is proportional only to the length of the subinterval. That is, the bus is as
likely to arrive between 8:00 and 8:02 as it is to arrive between 8:06 and 8:08. Let X denote the length of time a person
must wait for the bus if that person arrived at the bus stop at exactly 8:00. If we carefully measured in minutes how long
after 8:00 the bus arrived for several mornings, we could develop a relative frequency histogram for the data. From the
description just given, it should be clear that the relative frequency with which we observed a value of X between 0 and
2 would be approximately the same as the relative frequency with which we observed a value of X between 6 and 8. The
random variable X just discussed is an example of a random variable that has a uniform distribution. The general form
for the density function of a random variable with a uniform distribution is as follows.

Definition: If a < b, a r.v X is said to have a continuous uniform pdf on the interval (a, b) if and only if the density
function of X is:

f(x) =
1

b− a
, a ≤ x ≤ b

If X has a uniform distribution, then X is denoted by X ∼ U(a, b).

In order to check that f(X) is a pdf, we note that:

1. f(x) > 0, ∀x ∈ (a, b).

2.
∫
x
f(x)dx =

∫ b
a

dx
b−a = x

b−a
∣∣b
a

= b−a
b−a = 1.
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EXAMPLE 3.16

Arrivals of customers at a checkout counter follow a Poisson distribution. It is known that, during a given 30-minute
period, one customer arrived at the counter. Find the probability that the customer arrived during the last 5 minutes
of the 30-minute period.

Solution. As just mentioned, the actual time of arrival follows a uniform distribution over the interval of (0, 30). If X
denotes the arrival time, then

Pr(25 < X < 30) =

∫ 30

25

1

30
dx =

30− 25

30
=

5

30
=

1

6
.

The probability of the arrival occurring in any other 5-minute interval is also 1/6. J

The Cumulative Distribution Function: The cdf of X is derived as

F (x) = Pr(X ≤ x) =

∫ x

−∞
f(τ)dτ =

∫ x

a

dτ

b− a
=

τ

b− a

∣∣∣x
a

Therefore:

F (x) =


0, x < a
x−a
b−a , a ≤ x < b

1, x ≥ b

Mean and Variance: If a < b and X is a r.v uniformly distributed on the interval (a, b), then

µ = E[X] =
a+ b

2
and σ2 = V ar(X) =

(b− a)2

12
.

It is easy to evaluate the mean and variance of X by direct definition as

E[X] =

∫ b

a

x

b− a
dx =

x2

2(b− a)

∣∣∣b
a

=
b2 − a2

2(b− a)
=
b+ a

2
.

also

E[X2] =

∫ b

a

x2

b− a
dx =

x3

3(b− a)

∣∣∣b
a

=
b3 − a3

3(b− a)
=
b2 + ab+ a2

3
,

therefore

σ2 = E[X2]− µ2 =
b2 + ab+ a2

3
−
(
b+ a

2

)2

=
(b− a)2

12
.

EXAMPLE 3.17

Let the r.v X ∼ U(a, b) with µ = 1 and σ2 = 4
3 . Find Pr(X < 0).

Solution. Since the mean µ = 1 and

µ =
a+ b

2
= 1⇒ a+ b = 2 (3.1)

also, the variance σ2 = 4
3 , and

σ2 =
(b− a)2

12
=

4

3
⇒ (b− a)2 = 16⇒ b− a = ±4 (3.2)



48 SOME SPECIAL MATHEMATICAL DISTRIBUTIONS

Consider a + b = 2 and b − a = −4. Hence b = −1 and a = 3. This is non applicable because X ∼ U(a, b) and
therefore a < b. Then, a+ b = 2 and b− a = 4. Hence, b = 3 and a = −1.

∴ f(x) =
1

b− a
=

1

3− (−1)
=

1

4
, −1 < x < 3.

Therefore,

Pr(x < 0) =

0∫
−1

f(x)dx =
1

4

0∫
−1

dx =
1

4
.

J

EXAMPLE 3.18

If a parachutist lands at a random point on a line between markers A and B, find the probability that he is closer to
A than to B. Find the probability that his distance to A is more than three times his distance to B.

Solution. Consider the landing point X is a r.v and X ∼ (A,B), then for the first part of the question, we assume that
X −A < B −X , and

Pr(X −A < B −X) = Pr(2X < B +A) = Pr

(
X <

B +A

2

)
= F

(
B +A

2

)
= F

(
B +A

2

)
=

B+A
2 −A
B −A

=
A+B−2A

2

B −A
=

1

2
.

For the second part, assuming that X −A > 3(B −X), and that

Pr(X −A > 3(B −X)) = Pr(4X > 3B +A) = Pr

(
X >

3B +A

4

)
= 1− F

(
3B +A

4

)
= 1− F

(
3B +A

4

)
= 1−

3B+A
4 −A
B −A

= 1−
3B+A−4A

4

B −A
= 1−

3(B−A)
4

B −A
= 1− 3

4
=

1

4
.

J

3.2.2 Gamma Distribution

Some random variables are always non-negative and for various reasons yield distributions of data that are skewed (non-
symmetric) to the right. That is, most of the area under the density function is located near the origin, and the density
function drops gradually as x increases. A skewed probability density function is shown in Figure ??
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Figure 3.1 A skewed probability density function

A family of pdf’s that yields a wide variety of skewed distributional shapes is the gamma family. To define the
family of gamma distributions, we first need to introduce a function that plays an important role in many branches of
mathematics.

Gamma Function: For any α > 0, the gamma function Γ(α) is defined by

Γ(α) =

∞∫
0

xα−1e−xdx.

The most important properties of the gamma function are the following:

1. For any α > 0, Γ(α) = (α− 1)Γ(α− 1). (via integration by parts).

2. For any positive integer, n, Γ(n) = (n− 1)!.

3. Γ( 1
2 ) =

√
π.

Probability Density Function: A random variable X is said to have a gamma distribution with parameters α > 0 and
β > 0 if and only if the density function of X is

f(x) =
xα−1e−

x
β

βαΓ(α)
, 0 ≤ x <∞

and X is denoted by X ∼ G(α, β). To prove that f(x) is a valid pdf, we need to check:

1. f(x) > 0, ∀x ∈ [0,∞).

2. to prove the unity of integration, we use the gamma function, then∫
x

f(x)dx =

∫ ∞
0

1

βαΓ(α)
xα−1e−

x
β dx

Let y = x
β ⇒ x = βy ⇒ dx = βdy. Then∫ ∞

0

f(x)dx =

∫ ∞
0

1

βαΓ(α)
(βy)α−1e−yβdy =

1

Γ(α)

∫ ∞
0

yα−1e−ydy =
1

Γ(α)
Γ(α) = 1.

Therefore, f(x) is a pdf.
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Cumulative Distribution Function: In the special case when α is an integer, cdf of a gamma distributed r.v can be
expressed as a sum of certain Poisson probabilities. However, if α is not an integer, it is impossible to give a
closed-form expression for ∫ x

0

1

βαΓ(α)
τα−1e−

τ
β dτ

This integral is called an incomplete gamma function, and except when α = 1 (an exponential distribution), it is
impossible to obtain areas under the gamma density function by direct integration. There are not many tables of F (x)
available; in Table A.4, we present a small tabulation for α = 1, 2, . . . , 10, β = 1 and x = 1, 2, . . . , 15.

Moment Generating Function: The moment generating function of a gamma random variable is

M(t) =
1

(1− βt)α
, t <

1

β
.

We use the definition of the mgf to prove it, such as

M(t) = E[etX ] =

∫ ∞
0

etx
1

βαΓ(α)
xα−1e−

x
β dx =

1

βαΓ(α)

∫ ∞
0

xα−1e−
1
β (1−βt)xdx

Set y =
(

1−βt
β

)
x⇒ x =

(
β

1−βt

)
y ⇒ dx =

(
β

1−βt

)
dy, then

M(t) =
1

βαΓ(α)

∫ ∞
0

(
βy

1− βt

)α−1

e−y
(

β

1− βt

)
dy =

1

βαΓ(α)

(
β

1− βt

)α ∫ ∞
0

yα−1e−ydy =
1

(1− βt)α
.

Mean and Variance: If X has a gamma distribution with parameters α and β, then

µ = E[X] = αβ, and σ2 = V ar(X) = αβ2.

We can prove that either with direct integration or using the logarithm for the mgf.

ψ(t) = ln(M(t)) = −α ln(1− βt)⇒ ψ′(t) =
αβ

(1− βt)
⇒ ψ′(0) = αβ = µ.

and

ψ′′(t) =
αβ2

(1− βt)2
⇒ ψ′′(0) = αβ2 = σ2.

EXAMPLE 3.19

Let the r.v X ∼ G(3, 2). Write down the pdf and mgf of X . Find the mean µ and variance σ2. Evaluate the
probability Pr(12.6 < x < 16.8).

Solution. Since we have α = 3 and β = 2, then the pdf of X is

f(x) =
1

23Γ(3)
x3−1e−

x
2 =

1

16
x2e−

x
2 , 0 < x <∞.

then, the mgf is

M(t) =
1

(1− 2t)3
.

also, µ = αβ = 6 and σ2 = αβ2 = 12. Finally,

Pr(12.6 < X < 16.8) =

16.8∫
12.6

f(x) =
1

16

16.8∫
12.6

x2e−
x
2 dx = 0.04.

J
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EXAMPLE 3.20

Find the constant c so that the function f(x) = cx5e−3x, 0 < x <∞ is a pdf.

Solution. Since f(x) is a pdf, then

1 =

∫ ∞
0

f(x)dx = c

∫ ∞
0

x5e−3xdx = c
Γ(6)

36

∫ ∞
0

36

Γ(6)
x6−1e−3xdx =

5!c

36

Therefore, c = 36

5! . J

EXAMPLE 3.21

Suppose the survival time X in weeks of a randomly selected male mouse exposed to 240 rads of gamma radiation
has a gamma distribution with α = 8 and β = 1. What is the expected survival time for the mouse? what is the
probability that the mouse could survive between 6 and 12 weeks and the probability of it survives at least 3 weeks?

Solution. Since X ∼ G(8, 1), then the expected survival time in weeks is E[X] = αβ = (8)(1) = 8 weeks.
The probability that a mouse survives between 6 and 12 weeks is

Pr(6 ≤ X ≤ 12) = Pr(X ≤ 12)− Pr(X ≤ 6) = 0.911− 0.256 = 0.655.

The probability that a mouse survives at least 3 weeks is

Pr(X ≥ 3) = 1− Pr(X ≤ 3) = 1− 0.012 = 0.998.

J

3.2.3 The Exponential Distribution

The family of exponential distributions provides probability models that are widely used in engineering and science
disciplines. For example, the exponential density function is often useful for modelling the length of life of electronic
components.

Definition: A r.v X is said to have an exponential distribution with parameter λ > 0 if the pdf of X is

f(x) =
1

λ
e−

x
λ , x ≥ 0.

The r.v is denoted by X ∼ Exp(λ). In order to prove that f(x) is a valid pdf, we can simply prove

1. f(x) > 0, ∀x ∈ (0,∞).

2. It is easy to prove that the integral∫
x

f(x)dx =

∫ ∞
0

1

λ
e−

x
λ dx = −e− xλ

∣∣∣∞
0

= −(e−∞ − e0) = 1.

Note: The exponential pdf is a special case of the general gamma pdf in which α = 1 and β has been replaced by 1/λ.

The Cumulative Distribution Function: The cdf of a r.v that is exponentially distributed could be evaluate as

F (x) = Pr(X ≤ x) =

∫ x

−∞
f(τ)dτ =

∫ x

0

1

λ
e−

τ
λ dτ = −e− τλ

∣∣∣x
0

= 1− e− xλ ,
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therefore

F (x) =


0, x ≤ 0

1− e− xλ , 0 < x <∞
1, x =∞

The Moment Generating Function: The mgf of X is also evaluated for exponential distributed r.v as

M(t) = E[etX ] =

∫
x

etxf(x)dx =

∫ ∞
0

etx
1

λ
e−

x
λ dx =

∫ ∞
0

1

λ
e−

1
λ (1−λt)x = −e

− 1
λ (1−λt)x

(1− λt)

∣∣∣∞
0

=
1

1− λt
, t <

1

λ
.

Mean and Variance:If X is an exponential r.v with parameter λ, then

µ = E[X] = λ and σ2 = V ar(X) = λ2.

The proof simply follows directly from the mean and variance of the gamma distribution with α = 1.

Note: When λ = 1, then r.v X ∼ Exp(1) is said to have a standard exponential distribution with pdf
f(x) = e−x, 0 < x <∞.

EXAMPLE 3.22

Let the r.v X ∼ Exp(λ). If Pr(X ≤ 1) = Pr(X > 1). Find µ and σ2.

Solution. Since Pr(X ≤ 1) = Pr(x > 1) = 1 − Pr(X ≤ 1)⇒ 2 Pr(X ≤ 1) = 1 ⇒ Pr(X ≤ 1) = 1
2 . Therefore,

using the cdf F (x) = 1− e− xλ , 0 < x <∞, then

Pr(X ≤ 1) = F (1) = 1− e− 1
λ =

1

2
⇒ e−

1
λ =

1

2
⇒ − 1

λ
= ln

(
1

2

)
= ln(1)− ln(2) = 0− ln(2) = − ln(2)

⇒ λ =
1

ln(2)
.

Hence, µ = λ = 1
ln(2) and σ2 = λ2 =

(
1

ln(2)

)2

. J

EXAMPLE 3.23

If a r.v X ∼ Exp(2). Find Pr(X ≤ 1|X ≤ 2).

Solution.

Pr(X ≤ 1|X ≤ 2) =
Pr(X ≤ 1 ∩X ≤ 2)

Pr(X ≤ 2)
=

Pr(X ≤ 1)

Pr(X ≤ 2)
=
F (1)

F (2)
=

1− e− 1
2

1− e−1
.

J
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EXAMPLE 3.24

The response time X at an on-line computer terminal (the elapsed time between the end of a user’s inquiry and the
beginning of the system’s response to that inquiry) has an exponential distribution with expected response time equal
to 5 s. Then E[X] = λ = 5 s. Find the probability that the response time is at most 10 s and the probability that
response time is between 5 and 10 s.

Solution. The probability that the response time is at most 10 s is

Pr(X ≤ 10) = F (10) = 1− e− 10
5 = 1− e−2 = 0.865.

The probability that response time is between 5 and 10 s is

Pr(5 ≤ X ≤ 10) = F (10)− F (5) = (1− e−2)− (1− e−1) = 0.233.

J

EXAMPLE 3.25

One-hour carbon monoxide concentrations in air samples from a large city have an approximately exponential dis-
tribution with mean 3.6 ppm (parts per million).

a Find the probability that the carbon monoxide concentration exceeds 9 ppm during a randomly selected one-hour
period.

b A traffic-control strategy reduced the mean to 2.5 ppm. Now find the probability that the concentration exceeds 9 ppm.

Solution. Since X ∼ Exp(λ), and the mean of carbon monoxide concentrations in air is 3.6, then

Pr(X ≥ 9) = 1− Pr(X ≤ 9) = 1− F (9) = 1− (1− e− 9
3.6 ) = 0.082

If the mean of carbon monoxide concentrations in air is reduced to 2.5, then

Pr(X ≥ 9) = 1− Pr(X ≤ 9) = 1− F (9) = 1− (1− e− 9
2.5 ) = 0.027.

J

3.2.4 Chi-Square Distribution

Let ν be a positive integer. A random variable X is said to have a chi-square distribution with ν degrees of freedom (dof)
if X is a gamma-distributed r.v with parameters α = ν/2 and β = 2. Such random variables occur often in statistical
theory. The motivation behind calling the parameter ν the degrees of freedom of the Chi-square distribution rests on one
of the major ways for generating a random variable with this distribution.

The Probability Density Function: The r.v X is said to have a Chi-square distribution if it has a pdf

f(x) =
1

2ν/2Γ(ν/2)
x(ν/2)−1e−x/2, x ≥ 0.

and is denoted by X ∼ χ2(ν).
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The Cumulative Distribution Function: As the case of the gamma distribution, the cdf of chi-square distribution is
indeterminable as the integral

F (x) = Pr(X ≤ x) =

∫ x

0

1

2(ν/2)Γ(ν/2)
τ (ν/2)−1e−(τ/2)dτ

is almost impossible to solve. However, values of this integral corresponding to specific values of x and ν are given in
the tables.

The Moment Generating Function: The mgf of the r.v X ∼ χ2(ν) is

M(t) = E[etX ] =
1

(1− 2t)ν/2
, t <

1

2
.

Mean and Variance: Since X ∼ χ2(ν) is equal to X ∼ G(ν2 , 2), then the mean and variance are

µ = E[X] = ν and σ2 = V ar(X) = 2ν.

EXAMPLE 3.26

Let the r.v X has an mgf M(t) = (1 − 2t)−8. What is the distribution of X? Find µ and σ2. Evaluate Pr(6.97 <
X < 26.3).

Solution. The given mgf is for a r.v X ∼ G(8, 2) or X ∼ χ2(16), with dof ν = 16. Therefore µ = ν = 16 and
σ2 = 2ν = 32.

The probability of

Pr(7.96 < X < 26.3) = Pr(X < 26.3)− Pr(X < 7.96) = 0.95− 0.05 = 0.9.

J

3.2.5 The Beta Distribution

The beta density function is a two-parameter density function defined over the closed interval 0 ≤ x ≤ 1. It is often used
as a model for proportions, such as the proportion of impurities in a chemical product or the proportion of time that a
machine is under repair.

The Probability Density Function: A r.v X is said to have a beta probability distribution with parameters α > 0 and
β > 0, denoted by X ∼ Be(α, β), if the density function of X is

f(x) =
xα−1(1− x)β−1

B(α, β)
, 0 ≤ x ≤ 1,

where B(α, β), the beta function, is defined as

B(α, β) =

∫ 1

0

xα−1(1− x)β−1dx =
Γ(α)Γ(β)

Γ(α+ β)
.

To prove that f(x) is a pdf, we need to check that

1. f(x) > r, ∀x ∈ (0, 1).
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2. To show that
∫
x

f(x)dx = 1. Consider the integral I =
∫ 1

0
xα−1(1− x)β−1dx. Successive integration by parts

gives

(1− x)β−1 xα−1

−(β − 1)(1− x)β−2 ↘ xα

α

(β − 1)(β − 2)(1− x)β−3 ↘ xα+1

α(α+1)

...
... xα+2

α(α+1)(α+2)

±(β − 1)(β − 2) . . . [β − (β − 1)](1− x)β−β ↘
...

0 xα+β−1

α(α+1)...(α+β−1)

∴ I =
1

α
xα(1− x)β−1 +

(β − 1)

α(α+ 1)
xα+1(1− x)β−2 +

(β − 1)(β − 2)

α(α+ 1)(α+ 2)
xα+2(1− x)β−3 + . . .

+
(β − 1)(β − 2) . . . 3× 2× 1

α(α+ 1)(α+ 2) . . . (α+ β − 1)
xα+β−1

∣∣∣1
0

=
(β − 1)(β − 2) . . . 3× 2× 1

α(α+ 1)(α+ 2) . . . (α+ β − 1)
=

(β − 1)!

α(α+ 1)(α+ 2) . . . (α+ β − 1)
× (α− 1)(α− 2) . . . 3× 2× 1

(α− 1)(α− 2) . . . 3× 2× 1

∴ I =
(β − 1)!(α− 1)!

(α+ β − 1)!
=

Γ(α)Γ(β)

Γ(α+ β)
.

Thus, the integral of f(x) is

Γ(α+ β)

Γ(α)Γ(β)

∫ 1

0

xα−1(1− x)β−1dx =
Γ(α+ β)

Γ(α)Γ(β)
× Γ(α)Γ(β)

Γ(α+ β)
= 1

Note: In the case of α = β = 1, the beta distribution reduces to be a standard uniform, that is Be(1, 1) ≡ U(0, 1).

The Cumulative Distribution Function: The cdf for the beta r.v is commonly called the incomplete beta function and is
denoted by

F (x) =

∫ x

0

τα−1(1− τ)β−1

B(α, β)
dτ.

A tabulation of F (x) is given in Tables of the Incomplete Beta Function (Pearson, 1968). When α and β are both
positive integers, F (x) is related to the binomial probability function.

Mean and Variance: If X is a beta distributed r.v with parameters α > 0 and β > 0, then

µ = E[X] =
α

α+ β
and σ2 = V ar(X) =

αβ

(α+ β)2(α+ β + 1)
.

We can derive the rth moment by the direct definition and by the use of the same technique we used to prove the unity
of the pdf integration, then we can find that

E[Xr] =
Γ(α+ β)Γ(α+ r)

Γ(α)Γ(α+ β + r)
, r = 1, 2, 3, . . .

In order to derive the mean and variance, set r = 1, 2 to get

r = 1⇒ µ =
Γ(α+ β)Γ(α+ 1)

Γ(α)Γ(α+ β + 1)
=

(α+ β − 1)! α!

(α− 1)! (α+ β)!
=

α

α+ β
.

r = 2⇒ α(α+ 1)

(α+ β + 1)(α+ β)
⇒ σ2 = E[X2]− µ2 =

αβ

(α+ β + 1)(α+ β)2
.
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EXAMPLE 3.27

Find the constant c in the pdf: f(x) = c x19(1− x)29, 0 < x < 1.

Solution. Since f(x) is a pdf, then

1 = c

∫ 1

0

x19(1− x)29dx = c
Γ(20)Γ(30)

Γ(50)

∫ 1

0

Γ(50)

Γ(20)Γ(30)
x20−1(1− x)30−1dx

⇒ c =
Γ(50)

Γ(20)Γ(30)
.

J

EXAMPLE 3.28

A gasoline wholesale distributor has bulk storage tanks that hold fixed supplies and are filled every Monday. Of
interest to the wholesaler is the proportion of this supply that is sold during the week. Over many weeks of observa-
tion, the distributor found that this proportion could be modelled by a beta distribution with α = 4 and β = 2. Find
the probability that the wholesaler will sell at least 90% of his stock in a given week.

Solution. If Y denotes the proportion sold during the week, then

f(y) =
Γ(4 + 2)

Γ(4)Γ(2)
y3(1− y), 0 ≤ y ≤ 1.

and therefore,

Pr(Y > 0.9) =

∫ 1

0.9

f(y)dy = 20

∫ 1

0.9

y3(1− y)dy = 20

{
y4

4

∣∣∣1
0.9
− y5

5

∣∣∣1
0.9

}
= (20)(0.004) = 0.08.

It is not very likely that 90% of the stock will be sold in a given week. J

3.2.6 The Normal Distribution

The normal distribution with the familiar bell shape is the most important one in all of probability and statistics. Many
numerical populations have distributions that can be fit very closely by an appropriate normal curve. Examples include
heights, weights, and other physical characteristics, measurement errors in scientific experiments, measurements on fos-
sils, reaction times in psychological experiments, measurements of intelligence and aptitude, scores on various tests, and
numerous economic measures and indicators. Even when the underlying distribution is discrete, the normal curve often
gives an excellent approximation. In addition, even when individual variables themselves are not normally distributed,
sums and averages of the variables will under suitable conditions have approximately a normal distribution; this is the
content of the Central Limit Theorem discussed in the following chapters.

Probability Density Function: A continuous r.v X is said to have a normal distribution with parameters µ and σ2,
where −∞ < µ <∞ and σ > 0, if the pdf of X is

f(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 , ∞ < x <∞.

The r.v X is denoted by X ∼ N(µ, σ2). Here is a proof that the normal curve satisfies the pdf requirement:

1. f(x) > 0, ∀x ∈ (−∞,∞).
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2. In order to satisfy
∫
x
f(x)dx = 1, we will need to use some special technique. First of all consider the integral

I =
∫∞
−∞ e−x

2/2dx. Then

I2 =

{∫ ∞
−∞

e−x
2/2dx

}{∫ ∞
−∞

e−y
2/2dy

}
=

∫ ∞
−∞

∫ ∞
−∞

e−(x2+y2)/2dxdy

Use the Polar transformation by setting, x = r cos θ, 0 ≤ r <∞ and y = r sin θ, 0 ≤ θ ≤ 2π. Also, the Jacobian
for the transformation is

J =
∂(x, y)

∂(r, θ)
=

∣∣∣∣∣ ∂x
∂r

∂x
∂θ

∂y
∂r

∂y
∂θ

∣∣∣∣∣ =

∣∣∣∣∣ cos θ −r sin θ

sin θ r cos θ

∣∣∣∣∣ = r cos2 θ + r sin2 θ = r.

Then, dxdy = |J |drdθ = rdrdθ. This implies that the integral I2 can be written as

I2 =

∫ ∞
r=0

∫ 2π

θ=0

e−r
2/2rdrdθ = 2π

∫ ∞
r=0

re−r
2/2dr = −(2π)

[
e−r

2/2
]∞

0
= 2π

Hence, I =
∫∞
−∞ e−x

2/2dx =
√

2π. Back to the Normal distribution function,∫ ∞
−∞

f(x)dx =
1√
2πσ

∫ ∞
−∞

e−
(x−µ)2

2σ2 dx,

set y = x−µ
σ ⇒ x = σy + µ, then⇒ dx = σdy and

1√
2πσ

∫ ∞
−∞

e−y
2/2σdy =

1√
2π

√
2π = 1.

This proves that f(x) is a pdf.

Cumulative Distribution Function: There is no a closed form expression for the cdf of a normal distributed r.v because
the integral F (x) = Pr(X ≤ x) =

∫ x
−∞ f(τ)dτ has no analytic solution. hence, its evaluation requires the use of

numerical integration techniques. However, in literature, tables are approximated for the case of standard Normal
distribution, that is X ∼ N(0, 1).

Definition: The normal distribution with mean µ = 0 and σ2 = 1 is called the standard normal distribution. A r.v that
has a standard normal distribution is called a standard normal random variable and will be denoted by Z. The pdf of Z is

f(z) =
1√
2π

e−z
2/2, −∞ < z <∞.

The cdf of Z is F (z) = Pr(Z ≤ z) =
∫ z
−∞ f(τ)dτ , which we will denote by Φ(z).
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Figure 3.2 Standard Normal Distribution

EXAMPLE 3.29

Let Z denote a normal random variable with mean 0 and standard deviation 1.

1. Find Pr(Z > 1.25).

2. Find Pr(−0.38 ≤ Z ≤ 1.25).

Solution.

1. Pr(Z > 1.25) = 1− Pr(Z ≤ 1.25) = 1− Φ(1.25), the probability Φ(z) can be found in tables and is Φ(1.25) =
0.8944. Therefore Pr(Z > 1.25) = 1− 0.8944 = 0.1056.

2. Pr(−0.38 ≤ Z ≤ 1.25) = Φ(1.25)− Φ(−0.38) = 0.8944− 0.3520 = 0.5424.

J

Nonstandard Normal Distributions: When X ∼ N(µ, σ2), probabilities involving X are computed by “standardizing.”
The standardized variable is (X − µ)/σ. If X has a normal distribution with mean µ and standard deviation σ, then

Z =
X − µ
σ

,

has a standard normal distribution. Thus

Pr(a ≤ X ≤ b) = Pr

(
a− µ
σ
≤ Z ≤ b− µ

σ

)
= Φ

(
b− µ
σ

)
− Φ

(
a− µ
σ

)
.

Therefore,

Pr(X ≤ a) = Φ

(
a− µ
σ

)
and Pr(X ≤ b) = Φ

(
b− µ
σ

)
.

EXAMPLE 3.30

The time that it takes a driver to react to the brake lights on a decelerating vehicle is critical in avoiding rear-end
collisions. It is suggested that reaction time for an in-traffic response to a brake signal from standard brake lights
can be modelled with a normal distribution having mean value 1.25 s and standard deviation of 0.46 s. What is the
probability that reaction time is between 1.00 and 1.75 s?
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Solution. Let X denote reaction time, then standardizing gives

1 ≤ X ≤ 1.75

if and only if
1− 1.25

0.46
≤ x− 1.25

0.46
≤ 1.75− 1.25

0.46
.

Thus

Pr(1 ≤ X ≤ 1.75) = Pr

(
1− 1.25

0.46
≤ Z ≤ 1.75− 1.25

0.46

)
= Pr(−0.54 ≤ Z ≤ 1.09) = Φ(1.09)− Φ(−0.54)

= 0.8621− 0.2946 = 0.5675.

J

EXAMPLE 3.31

If the r.v X ∼ N(µ, σ2), such that Pr(X ≤ 60) = 0.1 and Pr(X > 90) = 0.05. Find µ and σ2.

Solution. Since X ∼ N(µ, σ2), then Z = X−µ
σ ∼ N(0, 1). Hence

0.1 = Pr(X ≤ 60) = Pr

(
X − µ
σ

≤ 60− µ
σ

)
= Pr

(
Z ≤ 60− µ

σ

)
.

From Φ(z) tables, we can find that 60−µ
σ = −1.282.

Similarly,

0.05 = Pr(X > 90) = Pr

(
X − µ
σ

>
90− µ
σ

)
= Pr

(
Z >

90− µ
σ

)
= 1− Pr

(
Z ≤ 90− µ

σ

)
.

From Φ(z) tables, we can find that 90−µ
σ = 1.645. Then, it is easy to find that µ = 73.1 and σ = 10.2. J

Note:

1. If a r.v X ∼ N(0, 1), then the r.v Y = X2 ∼ χ2(1).

2. If a r.v Z ∼ N(0, 1), then Pr(Z ≤ −a) = Pr(Z > a).

3. If a r.v Z ∼ N(0, 1), then Pr(−a ≤ Z ≤ a) = 2 Pr(Z ≤ a)− 1

Moment Generating Function: The mgf of a r.v X ∼ N(µ, σ2) is

M(t) = E[etX ] = eµt+
1
2σ

2t2

To prove that,

M(t) =

∫ ∞
−∞

etxf(x)dx =
1√
2πσ

∫ ∞
−∞

etxe−
(x−µ)2

2σ2 dx =
1√
2πσ

∫ ∞
−∞

e−
1

2σ2
(x2−2µx+µ2−2σ2tx)dx,

take

x2 − 2µx+ µ2 − 2σ2tx = x2 − 2(µ+ σ2t)x+ (µ+ σ2t)2 − (µ+ σ2t)2 + µ2

= [x− (µ+ σ2t)]2 − µ− 2µσ2t− σ4t2 + µ2

= [x− (µ+ σ2t)]2 − 2(µt+
1

2
σ2t2)σ2.



60 SOME SPECIAL MATHEMATICAL DISTRIBUTIONS

Therefore,

M(t) =
1√
2πσ

∫ ∞
−∞

e−
1

2σ2
[x−(µ+σ2t)]2 eµt+

1
2σ

2t2dx = eµt+
1
2σ

2t2
∫ ∞
−∞

1√
2πσ

e−
1

2σ2
[x−(µ+σ2t)]2 dx.

That gives M(t) = eµt+
1
2σ

2t2 since the integral is equal to one.

EXAMPLE 3.32

Let the r.v X has an mgf of M(t) = e5t+2t2 . What is the distribution of X? Find Pr(3 ≤ X ≤ 7)

Solution. We can rewrite the mgf as M(t) = e5t+ 1
2 4t2 , which means that X ∼ N(5, 4) with µ = 5 and σ2 = 4.

To find the probability,

Pr(3 ≤ X ≤ 7) = Pr

(
3− 5

2
≤ Z ≤ 7− 5

2

)
= Pr(−1 ≤ Z ≤ 1) = 2 Pr(Z ≤ 1)− 1

= 2(0.841)− 1 = 1.682− 1 = 0.682.

J



CHAPTER 4

MULTIVARIATE PROBABILITY DISTRIBUTIONS

4.1 Introduction

In Chapters ?? and ??, we studied probability models for a single random variable. Many problems in probability and
statistics lead to models involving several random variables simultaneously. For example, a gambler playing blackjack is
interested in the event of drawing both an ace and a face card from a 52-card deck. A biologist, observing the number of
animals surviving in a litter, is concerned about the intersection of these events:

A: The litter contains n animals.

B: x animals survive.

Similarly, observing both the height and the weight of an individual represents the intersection of a specific pair of events
associated with height–weight measurements. In this chapter, we first discuss probability models for the joint behaviour
of several random variables, putting special emphasis on the case in which the variables are independent of each other.
We then study expected values of functions of several random variables, including covariance and correlation as measures
of the degree of association between two variables. Then we will considers conditional distributions, the distributions of
random variables given the values of other random variables.

4.2 Bivariate and Multivariate Probability Distributions

There are many experimental situations in which more than one r.v will be of interest to an investigator. We shall first
consider joint probability distributions for two discrete r.v’s, then for two continuous variables, and finally for more than
two variables.

Please enter \offprintinfo{(Title, Edition)}{(Author)}
at the beginning of your document.
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4.2.1 Joint Probability Density Function

We already defined the pdf of more that one r.v in Chapter ?? as: Let X1 and X2 be two r.vs, then the Joint pdf of X1

and X2 is given by:

f(x1, x2) = Pr(X1 = x1, X2 = x2) =


∑
x1

∑
x2

f(x1, x2), discrete∫
x1

∫
x2

f(x1, x2)dx1dx2, continuous

EXAMPLE 4.1

A local supermarket has three checkout counters. Two customers arrive at the counters at different times when the
counters are serving no other customers. Each customer chooses a counter at random, independently of the other.
Let X1 denote the number of customers who choose counter 1 and X2, the number who select counter 2. Find the
joint probability function of X1 and X2.

Solution. We might proceed with the derivation in many ways. The most direct is to consider the sample space associated
with the experiment. Let the pair {i, j} denote the simple event that the first customer chose counter i and the second
customer chose counter j , where i, j = 1, 2, and 3. Using the mn rule, the sample space consists of 3 × 3 = 9 sample
points. Under the assumptions given earlier, each sample point is equally likely and has probability 1/9. The sample
space associated with the experiment is

S = [{1, 1}, {1, 2}, {1, 3}, {2, 1}, {2, 2}, {2, 3}, {3, 1}, {3, 2}, {3, 3}].

Notice that sample point {1, 1} is the only sample point corresponding to (X1 = 2, X2 = 0) and hence Pr(X1 =
2, X2 = 0) = 1/9. Similarly, Pr(X1 = 1, X2 = 1) = Pr({1, 2} or {2, 1}) = 2/9. Table 5.1 contains the probabilities
associated with each possible pair of values for X1 and X2—that is, the joint probability function for X1 and X2.

Probability function for X1 and X2

x2 \ x1 0 1 2

0 1/9 2/9 1/9
1 2/9 2/9 0
2 1/9 0 0

J

EXAMPLE 4.2

A bank operates both a drive-up facility and a walk-up window. On a randomly selected day, let X = the proportion
of time that the drive-up facility is in use (at least one customer is being served or waiting to be served) and Y =
the proportion of time that the walk-up window is in use. Then the set of possible values for (X,Y ) is the rectangle
D{(x, y) : 0 ≤ x ≤ 1; 0 ≤ y ≤ 1}. Suppose the joint pdf of (X,Y ) is f(x, y) = 6

5 (x+y2), 0 ≤ x ≤ 1, 0 ≤ y ≤ 1.
Verify that f(x, y) is a valid pdf. Evaluate Pr

(
0 ≤ x ≤ 1

4 , 0 ≤ Y ≤ 1
4

)
.

Solution. To verify that this is a legitimate pdf, note that f(x, y) > 0 and∫ ∞
−∞

∫ ∞
−∞

f(x, y)dxdy =

∫ 1

0

∫ 1

0

6

5
(x+ y2)dxdy =

∫ 1

0

∫ 1

0

6

5
xdxdy +

∫ 1

0

∫ 1

0

6

5
y2dxdy

=

∫ 1

0

6

5
xdx(1− 0) +

∫ 1

0

6

5
y2dy(1− 0) =

6

10
x2
∣∣∣1
0

+
6

15
y3
∣∣∣1
0

=
6

10
+

6

15
= 1



BIVARIATE AND MULTIVARIATE PROBABILITY DISTRIBUTIONS 63

The probability that neither facility is busy more than one-quarter of the time is

Pr

(
0 ≤ X ≤ 1

4
, 0 ≤ Y ≤ 1

4

)
=

∫ 1/4

0

∫ 1/4

0

6

5
(x+ y2)dxdy =

6

5

∫ 1/4

0

∫ 1/4

0

xdxdy +
6

5

∫ 1/4

0

∫ 1/4

0

y2dxdy

=
6

5

(
1

4
− 0

)∫ 1/4

0

xdx+
6

5

(
1

4
− 0

)∫ 1/4

0

y2dx

=
6

20

x2

2

∣∣∣1/4
0

+
6

20

y3

3

∣∣∣1/4
0

=
7

640
= 0.0109.

J

EXAMPLE 4.3

Gasoline is to be stocked in a bulk tank once at the beginning of each week and then sold to individual customers.
Let Y1 denote the proportion of the capacity of the bulk tank that is available after the tank is stocked at the beginning
of the week. Because of the limited supplies, Y1 varies from week to week. Let Y2 denote the proportion of the
capacity of the bulk tank that is sold during the week. Because Y1 and Y2 are both proportions, both variables take
on values between 0 and 1. Further, the amount sold, y2, cannot exceed the amount available, y1. Suppose that the
joint density function for Y1 and Y2 is given by: f(y1, y2) = 3y1, 0 ≤ y2 ≤ y1 ≤ 1. Find the probability that less
than one-half of the tank will be stocked and more than one-quarter of the tank will be sold.

Solution. We want to find Pr(0 ≤ Y1 ≤ 0.5, Y2 > 0.25). For any continuous random variable, the probability of
observing a value in a region is the volume under the density function above the region of interest. We are interested only
in values of y1 and y2 such that 0 ≤ y1 ≤ 0.5 and y2 > 0.25. Thus we have

Pr(0 ≤ Y1 ≤ 0.5, Y2 > 0.25) =

∫ 1/2

0

∫ y1

1/4

3y1dy2dy1 =

∫ 1/2

0

3y1

(
y2

∣∣∣y1
1/4

)
dy1

=

∫ 1/2

0

3y1(y1 − 1/4)dy1 =
[
y3

1 − (3/8)y2
1

]1/2
0

= 1/32.

J

4.2.2 Joint Cumulative Distribution Function

Let X1 and X2 be any r.v’s with joint pdf f(x1, x2), then the joint distribution function F (x1, x2), such that

F (x1, x2) = Pr(X1 ≤ x1, X2 ≤ x2) =


x1∑

τ1=−∞

x2∑
τ2=−∞

f(τ1, τ2), discrete
x1∫
−∞

x2∫
−∞

f(τ1, τ2)dτ1dτ2, continuous
,

for all −∞ < x1 <∞, −∞ < x2 <∞.

Theorem: If X1 and X2 are r.v’s with joint distribution function F (x1, x2), then

1. F (−∞,−∞) = F (−∞, y2) = F (y1,−∞) = 0.

2. F (∞,∞) = 1.

3. If y∗1 ≥ y1 and y∗2 ≥ y2, then

F (y∗1 , y
∗
2)− F (y∗1 , y2)− F (y1, y

∗
2) + F (y1, y2) ≥ 0.



64 MULTIVARIATE PROBABILITY DISTRIBUTIONS

EXAMPLE 4.4

Consider the r.v’s X1 and X2 of Example ??. Find F (1, 2), F (1.5, 2), and F (5, 7).

Solution. Using the results in Example ??, we find

F (−1, 2) = Pr(X1 ≤ −1, X2 ≤ 2) = Pr(φ) = 0.

Further,

F (1.5, 2) = Pr(X1 ≤ 1.5, X2 ≤ 2)

= f(0, 0) + f(0, 1) + f(0, 2) + f(1, 0) + f(1, 1) + f(1, 2) = 8/9.

Similarly,
F (5, 7) = Pr(X1 ≤ 5, X2 ≤ 7) = 1.

Notice that F (x1, x2) = 1 for all x1, x2 such that min{x1, x2} ≥ 2. Also, F (x1, x2) = 0 if min{x1, x2} < 0. J

4.2.3 Marginal Distribution

Recall that the distinct values assumed by a discrete random variable represent mutually exclusive events. Similarly,
for all distinct pairs of values x1, x2, the bivariate events (X1 = x1, X2 = x2), represented by (x1, x2), are mutually
exclusive events. It follows that the univariate event (X1 = x1) is the union of bivariate events of the type (X1 =
x1, X2 = x2), with the union being taken over all possible values for x2. For example, consider the experiment of
tossing a pair of dice. The sample space contains 36 sample points, corresponding to the mn = (6)(6) = 36 ways in
which numbers may appear on the faces of the dice. Consider the following r.v’s

X1: The number of dots appearing on die 1,

X2: The number of dots appearing on die 2.

Then,

Pr(X1 = 1) = p(1, 1) + p(1, 2) + p(1, 3) + · · ·+ p(1, 6)

= 1/36 + 1/36 + · · ·+ 1/36 = 6/36 = 1/6

Pr(X1 = 2) = p(2, 1) + p(2, 2) + p(2, 3) + · · ·+ p(2, 6)

= 1/36 + 1/36 + · · ·+ 1/36 = 6/36 = 1/6

...
Pr(X1 = 6) = p(6, 1) + p(6, 2) + p(6, 3) + · · ·+ p(6, 6)

= 1/36 + 1/36 + · · ·+ 1/36 = 6/36 = 1/6

Expressed in summation notation, probabilities about the variable X1 alone are

Pr(X1 = x1) = p1(x1) =

6∑
y2=1

p(x1, x2).

Similarly, probabilities corresponding to values of the variable X2 alone are given by

Pr(X2 = x2) = p2(x2) =

6∑
y1=1

p(x1, x2).
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Summation in the discrete case corresponds to integration in the continuous case, which leads us to the following defini-
tion.

Definition: Let X1 and X2 be jointly r.v’s with probability function f(x1, x2). Then the marginal probability functions
of X1 and X2, respectively, are given by

f1(x1) =


∑
x2

f(x1, x2), discrete∫
x2

f(x1, x2)dx2, continuous

f2(x2) =


∑
x1

f(x1, x2), discrete∫
x1

f(x1, x2)dx1, continuous

Notes: Let X and Y are two r.v’s with a joint pdf f(x, y) and marginal pdf’s fX(x) and fY (y) respectively. Suppose
we require to evaluate

1. Pr(a ≤ X ≤ b):

Pr(a ≤ X ≤ b) =


b∑

x=a
fX(x) =

b∑
x=a

∑
y
f(x, y), discrete

b∫
x=a

fX(x)dx =
b∫

x=a

∫
y

f(x, y)dxdy, continuous

2. Pr(c ≤ Y ≤ d):

Pr(c ≤ Y ≤ d) =


d∑
y=c

fY (y) =
d∑
y=c

∑
x
f(x, y), discrete

d∫
y=c

fY (y)dy =
d∫

y=c

∫
x

f(x, y)dxdy, continuous

3. E[u(X)]:

E[u(X)] =


∑
x
u(x)fX(x) =

∑
x

∑
y
u(x)f(x, y), discrete∫

x

u(x)fX(x)dx =
∫
x

∫
y

u(x)f(x, y)dxdy, continuous

4. E[u(Y )]:

E[u(Y )] =


∑
y
u(y)fY (y) =

∑
y

∑
x
u(y)f(x, y), discrete∫

y

u(y)fY (y)dy =
∫
y

∫
x

u(y)f(x, y)dxdy, continuous

5. E[u(X,Y )]:

E[u(X,Y ) =


∑
y

∑
x
u(x, y)f(x, y), discrete∫

x

∫
y

u(x, y)f(x, y)dydx, continuous
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EXAMPLE 4.5

Let the joint pdf of r.v’s X and Y be:

1. f(x, y) = 1
21 (x+ y), x = 1, 2, 3; y = 1, 2.

2. f(x, y) = e−(x+y), 0 < x <∞; 0 < y <∞.

a. Find the marginal pdf for both X and Y .

b. Find E[X], V ar(X), E[Y ], V ar(Y ), E[XY ].

Solution. For number (1) we have:

a. The marginal pdf of X is

fx(x) =
∑
y

f(x, y) =

2∑
y=1

1

21
(x+ y) =

1

21
[(x+ 1) + (x+ 2)] =

1

21
(2x+ 3), x = 1, 2, 3.

Also, the marginal pdf of Y is

fy(y) =
∑
x

f(x, y) =

3∑
x=1

1

21
(x+ y) =

1

21
[(y + 1) + (y + 2) + (y + 3)] =

1

7
(y + 2), x = 1, 2.

b. To find the expectations,

µx = E[X] =
∑
x

fx(x) =
1

21

3∑
x=1

x(2x+ 3) =
46

21
.

E[X2] =
∑
x

x2fx(x) =
1

21

3∑
x=1

x2(2x+ 3) =
114

21
.

σ2
x = V ar(X) = E[X2]− µ2

x =
114

21
−
(

46

21

)2

=
278

441
.

Similarly,

µy = E[Y ] =
∑
y

fy(y) =
1

7

2∑
y=1

y(y + 2) =
11

7
.

E[Y 2] =
∑
y

y2fy(y) =
1

7

2∑
y=1

y2(y + 2) =
19

7
.

σ2
y = V ar(Y ) = E[Y 2]− µ2

y =
19

7
−
(

11

7

)2

=
12

49
.

Finally,

E[XY ] =
∑
x

∑
y

xyf(x, y) =
1

21

3∑
x=1

2∑
y=1

xy(x+ y) =
1

21

3∑
x=1

[x(x+ 1) + x(x+ 2)]

=
1

21

3∑
x=1

(3x2 + 5x) =
1

21
(8 + 29 + 42) =

24

7
.
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For number (2) we have:

a. The marginal pdf of X is

fx(x) =

∫
y

f(x, y)dy =

∫ ∞
0

e−(x+y)dy = −e−x
[
e−y
]∞
0

= e−x, 0 < x <∞.

Also, the marginal pdf of Y is

fy(y) =

∫
x

f(x, y)dx =

∫ ∞
0

e−(x+y)dx = −e−y
[
e−x

]∞
0

= e−y, 0 < y <∞.

b. To find the expectations,

µx = E[X] =

∫
x

xfx(x)dx =

∫ ∞
0

xe−xdx = 1 = E[Y ] = µy.

E[X2] =

∫
x

x2fx(x)dx =

∫ ∞
0

x2e−xdx = 2 = E[Y 2].

σ2
x = V ar(X) = E[X2]− µ2

x = 2− (1)2 = 1 = σ2
y = V ar(Y )

Finally,

E[XY ] =

∫
x

∫
y

xyf(x, y)dxdy =

∫ ∞
0

∫ ∞
0

xye−(x+y)dxdy

=

(∫ ∞
0

xe−xdx

)(∫ ∞
0

ye−ydy

)
= (1)(1) = 1.

J

Definition: If f(x, y) and F (x, y) are the joint pdf and cdf of r.v’s X and Y . Then the marginal cdf of X and Y ,
respectively , are

Fx(x) = F (x,∞) and Fy(y) = F (∞, y).

and are defined as

Fx(x) =


x∑

τ=−∞
fx(τ), discrete,

x∫
−∞

fx(τ)dτ, continuous.

and

Fy(y) =


y∑

τ=−∞
fy(τ), discrete,

y∫
−∞

fy(τ)dτ, continuous.
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EXAMPLE 4.6

Back to the last example and find the joint cdf of X and Y , then find the marginal cdf for both X and Y .

Solution. For number (1) we have f(x, y) = 1
21 (x+ y), x = 1, 2, 3; y = 1, 2. Then

F (x, y) =

x∑
τ=1

y∑
κ=1

f(τ, κ) =
1

21

x∑
τ=1

y∑
κ=1

(τ + κ) =
1

21

x∑
τ=1

[(τ + 1) + (τ + 2) + · · ·+ (τ + y)] (4.1)

=
1

21

x∑
τ=1

[
yτ +

y(y + 1)

2

]
=

1

21

[
yx(x+ 1)

2
+
xy(y + 1)

2

]
=

1

42
xy(x+ y + 2),

hence

F (x, y) =


0, x < 1, y < 1
1
42xy(x+ y + 2), 1 ≤ x < 3, 1 ≤ y < 2

1, x ≥ 3, y ≥ 2

The marginal cdf of X is

Fx(x) = F (x, 2) =


0, x < 1
1
21x(x+ 4), 1 ≤ x < 3

1, x ≥ 3

Similarly, the marginal cdf of Y is

Fy(y) = F (3, y) =


0, y < 1
1
14y(y + 5), 1 ≤ y < 2

1, y ≥ 2

For number (2) we have f(x, y) = e−(x+y), 0 < x <∞; 0 < y <∞. Then

F (x, y) =

∫ x

−∞

∫ y

−∞
f(τ, κ)dτdκ =

∫ x

0

∫ y

0

e−(τ+κ)dτdκ =

(∫ x

0

e−τdτ

)(∫ y

0

e−κdκ

)
=
[
−e−τ

]x
0

[
−e−κ

]y
0
,

hence

F (x, y) =


0, x ≤ 0, y ≤ 0

(1− e−x)(1− e−y), 0 < x < inf, 0 < y <∞
1, x = y =∞

The marginal cdf of X is

Fx(x) = F (x,∞) =


0, x ≤ 0

1− e−x, 0 < x < inf

1, x =∞

The marginal cdf of Y is

Fy(y) = F (∞, y) =


0, y ≤ 0

1− e−y, 0 < y < inf

1, y =∞

J
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Remarks:

1. The joint moment generating function (mgf) of the two r.v’s X and Y with a joint pdf f(x, y) is defined as

M(t1, t2) = E[et1X+t2Y ] =


∑
x

∑
y
et1X+t2Y f(x, y), discrete∫

x

∫
y

et1X+t2Y f(x, y)dxdy, continuous

and satisfy M(0, 0) = 1.

2. The marginal mgf of X and Y can be obtained by

MX(t1) = E[et1X ] = M(t1, 0), and MY (t2) = E[et2Y ] = M(0, t2).

3. We can evaluate the mean and variance for both X and Y using the mgf as

E[XnY m] =
∂n+mM(t1, t2)

∂tn1∂t
m
2

∣∣∣∣∣
t1=t2=0

4.2.4 Conditional Distribution

The distribution of Y can depend strongly on the value of another variable X . For example, if X is height and Y is
weight, the distribution of weight for men who are 180 cm tall is very different from the distribution of weight for short
men. The conditional distribution of Y given X = x describes for each possible x how probability is distributed over
the set of possible y values. We define the conditional distribution of Y given X , but the conditional distribution of X
given Y can be obtained by just reversing the roles of X and Y . Both definitions are analogous to that of the conditional
probability Pr(A|B) as the ratio Pr(A ∪B)/Pr(B).

Definition: If X and Y are jointly r.v’s with joint density function f(x, y), then the conditional pdf of X given Y = y is

fX|Y = Pr(X = x|Y = y) =
Pr(X = x, Y = y)

Pr(Y = y)
=
f(x, y)

fY (y)
,

also, conditional pdf of Y given X = x is

fY |X = Pr(Y = y|X = x) =
Pr(Y = y,X = x)

Pr(X = x)
=
f(x, y)

fX(x)
.

Definition: If X and Y are jointly r.v’s with joint density function f(x, y), then the conditional distribution function of
X given Y = y and Y given X = x are

F (x|y) = Pr(X ≤ x|Y = y), and F (y|x) = Pr(Y ≤ y|X = x).

EXAMPLE 4.7

Let the joint pdf of r.v’s X and Y be f(x, y) = e−y , 0 < x < y <∞. Find the following

1. The conditional pdf of both X given Y and Y given X .

2. E[X|Y = y], V ar(X|Y = y), E[Y |X = x] and V ar[Y |X = x].

3. Evaluate the probabilities: Pr(1 ≤ X ≤ 2) and Pr(1 ≤ X ≤ 2|Y = 2).



70 MULTIVARIATE PROBABILITY DISTRIBUTIONS

Solution. We have the joint pdf f(x, y) = e−y , 0 < x < y <∞, then the marginal pdf of X and Y are

fX(x) =

∫
y

f(x, y)dy =

∫ ∞
x

e−ydy = −e−y
∣∣∣∞
x

= e−x, 0 < x <∞.

and

fY (y) =

∫
x

f(x, y)dx =

∫ y

0

e−ydy = e−yx
∣∣∣y
0

= ye−y, 0 < y <∞.

1. The conditional pdf of X given Y = y is

f1(x|y) =
f(x, y)

fY (y)
=

e−y

ye−y
=

1

y
, 0 < x < y, for any 0 < y <∞.

The conditional pdf of Y given X = x is

f2(y|x) =
f(x, y)

fX(x)
=
e−y

e−x
= e−(y−x), x < y <∞, for any 0 < x <∞.

2. To evaluate the expectations:

E[X|Y = y] = µx|y =

∫
x

xf1(x|y)dx =

∫ y

0

x
1

y
dx =

1

y

[
x2

2

]y
0

=
y

2
.

E[X2|Y = y] =

∫
x

x2f1(x|y)dx =

∫ y

0

x2 1

y
dx =

1

y

[
x3

3

]y
0

=
y2

3
.

∴ σ2
x|y = E[X2|Y = y]− µ2

x|y =
y2

3
−
(y

2

)2

=
y2

12
.

Similarly,

E[Y |X = x] = µy|x =

∫
y

yf2(y|x)dy =

∫ ∞
x

ye−(y−x)dx = ex
∫ ∞
x

ye−ydy

= ex
[
−ye−y − e−y

]∞
x

= ex(xe−x + e−x) = x+ 1.

E[Y 2|X = x] =

∫
y

y2f2(y|x)dy =

∫ ∞
x

y2e−(y−x)dx = ex
∫ ∞
x

y2e−ydy

= ex
[
−y2e−y − 2ye−y − 2e−y

]∞
x

= ex(x2e−x + 2xe−x + 2e−x) = x2 + 2x+ 2.

σy|x = E[Y 2|X = x]− µ2
y|x = x2 + 2x+ 2− (x+ 1)2 = 1.

3. To Evaluate the probabilities:

Pr(1 ≤ X ≤ 2) =

∫ 2

1

fX(x)dx =

∫ 2

1

e−xdx = −e−x
∣∣∣2
1

= e−1 − e−2.

Pr(1 ≤ X ≤ 2|Y = 2) =

∫ 2

1

f1(x|y = 2)dx =

∫ 2

1

1

2
dx =

x

2

∣∣∣2
1

=
1

2
(2− 1) =

1

2
.

J
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EXAMPLE 4.8

A soft-drink machine has a random amount Y in supply at the beginning of a given day and dispenses a random
amount X during the day (with measurements in gallons). It is not resupplied during the day, and hence X ≤ Y .
It has been observed that X and Y have a joint density function f(x, y) = 1

2 , 0 ≤ x ≤ y ≤ 2. That is, the points
(x, y) are uniformly distributed over the triangle with the given boundaries. Find the conditional density of X given
Y = y. Evaluate the probability that less than 1/2 gallon will be sold, given that the machine contains 1.5 gallons at
the start of the day.

Solution. The marginal density of Y is given by

fY (y) =

∫
x

f(x, y)dx =

∫ y

0

1

2
dx =

y

2
, 0 ≤ y ≤ 2.

Note that fY (y) > 0 if and only if 0 < y2. Thus, for any 0 < y ≤ 2,

f(x|y) =
f(x, y)

fY (y)
=

1/2

y/2
=

1

y
, 0 ≤ x ≤ y.

Also, f(x|y) is undefined if y ≤ 0 or y > 2. The probability of interest is

Pr(X ≤ 1|Y = 1.5) =

∫ 1/2

0

f(x|y = 1.5)dx =

∫ 1/2

0

1

1.5
dx =

1/2

3/2
=

1

3
.

J

EXAMPLE 4.9

Let the r.v X has a pdf f(x) and cdf F (x). Define f(x|X > x0) = f(x)
1−F (x0) , x0 < x <∞ and x0 is a fixed number.

1. Show that f(x|X > x0) be a conditional pdf of X given X > x0.

2. Consider f(x) = e−x, 0 < x <∞. Compute Pr(X > 2|X > 1).

Solution. 1. To prove that f(x|X > x0) is a pdf, we check

- f(x|X > x0) ≥ 0, because f(x) ≥ 0 and 1− F (x0) > 0.

- The unity of integration,∫ ∞
x0

f(x|X > x0)dx =

∫ ∞
x0

f(x)

1− F (x0)
dx =

1

1− F (x0)

∫ ∞
x0

f(x)dx =
1

1− F (x0)
[F (x)]

∞
x0

=
F (∞)− F (x0)

1− F (x0)
=

1− F (x0)

1− F (x0)
= 1.

2. Since we have the pdf f(x) = e−x and the cdf is defined as: F (x) = 1− e−x (exponential distribution). Therefore,

f(x|X > 1) =
f(x)

1− F (1)
=

e−x

1− 1 + e−1
= e · e−x, 1 < x <∞.

Now, to compute the probability

Pr(X > 2|X > 1) =

∫ ∞
2

f(x|X > 1)dx =

∫ ∞
2

e · e−xdx = −e
[
e−x

]∞
2

= −e(0− e−2) = e−1.

J



72 MULTIVARIATE PROBABILITY DISTRIBUTIONS

4.2.5 Independent Random Variables

In many situations, information about the observed value of one of the two variables X and Y gives information about
the value of the other variable. In Example ?? we saw two dependent r.v’s, for which probabilities associated with X
depended on the observed value of Y . In other examples, this is not always the case. Probabilities associated with X
were the same, regardless of the observed value of Y . We now present a formal definition of independence of r.v’s. Two
events A and B are independent if Pr(A ∪B) = Pr(A)× Pr(B).

Definition: Two random variables X and Y with joint density function f(x, y) and marginal density functions fX(x)
and fY (y), are said to be independent if for every pair of x and y values,

f(x, y) = fX(x) · fY (y), ∀(x, y).

we can also define the independence in terms of the joint cdf and the marginal cdf’s FX(x) and FY (y) of X and Y , then

F (x, y) = FX(x) · FY (y),

for every pair of real numbers (x, y).

For the die-tossing problem of Section ??, show that X1 and X2 are independent since each of the 36 sample points
was given probability 1/36. Consider, for example, the point (1, 2). We know that p(1, 2) = 1/36. Also, p1(1) =
Pr(X1 = 1) = 1/6 and p2(2) = Pr(X2 = 2) = 1/6. Hence, p(1, 2) = p1(1)p2(2). The same is true for all other values
for x1 and x2, and it follows that X1 and X2 are independent.

Note: If two r.v’s X and Y are independent, we have

f1(x|y) =
f(x, y)

fY (y)
=
fX(x) · fY (y)

fY (y)
= fX(x).

and

f2(y|x) =
f(x, y)

fX(x)
=
fX(x) · fY (y)

fX(x)
= fY (y).

EXAMPLE 4.10

Back to example ?? and examine whether or not X and Y are independent.

Solution. In example ?? we have two cases:

1. The first case where X and Y are two discrete r.v’s with joint pdf f(x, y) = 1
21 (x + y), x = 1, 2, 3; y = 1, 2. and

marginal pdf’s fX(x) = 1
21 (2x+ 3), x = 1, 2, 3 and fY (y) = 1

7 (y+ 2), y = 1, 2. In order to check if X and Y are
independent,

fX(x) · fY (y) =
1

217
(2x+ 3)(y + 2) 6= 1

21
(x+ y) = f(x, y).

Therefore X and Y are dependent r.v’s.

2. The second case where X and Y are two continuous r.v’s with joint pdf f(x, y) = e−(x+y), 0 < x, y < ∞, and
marginal pdf’s fX(x) = e−x, 0 < x < ∞ and fY (y) = e−y , 0 < y < ∞. In order to check if X and Y are
independent,

fX(x) · fY (y) = e−x · e−y = e−(x+y) = f(x, y),

this implies that X and Y are independent.

J
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Properties: Let X and Y are two independent r.v’s, then:

1. Pr(a ≤ X ≤ b, c ≤ Y ≤ d) = Pr(a ≤ X ≤ b) · Pr(c ≤ Y ≤ d).

2. E[u(X) · v(Y )] = E[u(X)] · E[v(Y )].

3. M(t1, t2) = MX(t1) ·MY (t2).

EXAMPLE 4.11

Let the joint mgf of r.v’s X and Y is: M(t1, t2) = e
t21

1−2t2

1−2t2
. Find the marginal mgf’s for both X and Y and test

whether X and Y are independent.

Solution. We can simply find the marginal mgf’s for X and Y as

MX(t1) = M(t1, 0) = et
2
1 , and MY (t2) = M(0, t2) = (1− 2t2)−1.

In order to test if X and Y are independent,

MX(t1) ·MY (t2) =
et

2
1

1− 2t2
6= M(t1, t2),

therefore X and Y are dependent. J

theorem: Let X and Y have a joint density f(x, y), Then X and Y are independent r.v’s if and only if

f(x, y) = g(x)h(y)

where g(x) is a non-negative function of x alone and h(y) is a non-negative function of y alone.

EXAMPLE 4.12

Let X and Y have a joint density given by: f(x, y) = 2x, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1. Are X and Y independent
variables?

Solution. Notice that f(x, y) is positive for 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1. Further, f(x, y) = g(x)h(y), where

g(x) = x, 0 ≤ x ≤ 1, and h(y) = 2, 0 ≤ y ≤ 1.

Therefore, X and Y are independent r.v’s. Notice that g(x) and h(y), as defined here, are not density functions, although
2g(x) and h(y2)/2 are densities. J

4.3 Expected Values, Covariance, and Correlation

We previously saw that any function u(X) of a single r.v X is itself a r.v. However, to compute E[u(X)], it was not
necessary to obtain the probability distribution of u(X); instead, E[u(X)] was computed as a weighted average of u(X)
values, where the weight function was the pdf f(x) of X . A similar result holds for a function u(X,Y ) of two jointly
distributed r.v’s.
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EXAMPLE 4.13

Let X and Y have joint density given by: f(x, y) = 2x, 0 ≤ x ≤ 1; 0 ≤ y ≤ 1. Find E[XY ], E[X] and V ar(X).

Solution. From expectation definition we obtain

- The expected value of E[XY ] is:

E[XY ] =

∫ 1

0

∫ 1

0

xyf(x, y)dxdy =

∫ 1

0

∫ 1

0

xy(2x)dxdy =

∫ 1

0

y

[
2x3

3

]1

0

dy

=
2

3

∫ 1

0

ydy =
2

3

[
y2

2

]1

0

=
1

3
.

- The expected value of E[X] is:

E[X] =

∫ 1

0

∫ 1

0

xf(x, y)dxdy =

∫ 1

0

∫ 1

0

x(2x)dxdy =

∫ 1

0

[
2x3

3

]1

0

dy

=
2

3

∫ 1

0

dy =
2

3
[y]

1
0 =

2

3
.

- To find V ar(X) we need to find E[X2] first, then:

E[X2] =

∫ 1

0

∫ 1

0

x2f(x, y)dxdy =

∫ 1

0

∫ 1

0

x2(2x)dxdy =

∫ 1

0

[
2x4

4

]1

0

dy

=
1

2

∫ 1

0

dy =
1

2
[y]

1
0 =

1

2
.

Therefore,

V ar(X) = E[X2]− (E[X])2 =
1

2
−
(

2

3

)2

=
1

18
.

J

EXAMPLE 4.14

A process for producing an industrial chemical yields a product containing two types of impurities. For a specified
sample from this process, let X denote the proportion of impurities in the sample and let Y denote the proportion of
type I impurities among all impurities found. Suppose that the joint distribution of X and Y can be modelled by the
pdf: f(x, y) = 2(1 − x), 0 ≤ x ≤ 1; 0 ≤ y ≤ 1. Find the expected value of the proportion of type I impurities in
the sample.

Solution. Because X is the proportion of impurities in the sample and Y is the proportion of type I impurities among
the sample impurities, it follows that XY is the proportion of type I impurities in the entire sample. Thus, we want to
find E[XY ]:

E[XY ] =

∫ 1

0

∫ 1

0

2xy(1− x)dxdy = 2

∫ 1

0

x(1− x)

(
1

2

)
dx =

∫ 1

0

(x− x2)dx

=

[
x2

2
− x3

3

]1

0

=
1

2
− 1

3
=

1

6
.

Therefore, we would expect 1/6 of the sample to be made up of type I impurities. J
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4.3.1 The Covariance and Correlation Coefficient

Intuitively,we think of the dependence of two random variables X and Y as implying that one variable, say X , either
increases or decreases as Y2 changes. We will confine our attention to two measures of dependence: the covariance
between two random variables and their correlation coefficient.

4.3.1.1 The Covariance When two random variables X and Y are not independent, it is frequently of interest to
assess how strongly they are related to each other. The average value of (X − µx)(Y − µy) provides a measure of the
linear dependence between X and Y . This quantity, E[(X − µx)(Y − µy)], is called the covariance of X and Y .

Definition: If X and Y are r.v’s with means µx and µy and variances σ2
x and σ2

y , respectively, the covariance of X and
Y is defined as

Cov(X,Y ) = E[(X − µx)(Y − µy)].

The larger the absolute value of the covariance ofX and Y , the greater the linear dependence betweenX and Y . Positive
values indicate that X increases as Y increases; negative values indicate that X decreases as Y increases. A zero value
of the covariance indicates that the variables are uncorrelated and that X and Y are independent.

Note: From the definition of the covariance, we can find the relation between the variances and covariance of the two
r.v’s X and Y as the following:

Cov(X,Y ) = E[(X − µx)(Y − µy)] = E[XY − µxY − µyX + µxµy] = E[XY ]− µxE[Y ]− µyE[X] + µxµy

= E[XY ]− µxµy − µyµx + µxµy = E[XY ]− µxµy

EXAMPLE 4.15

Let the joint pdf of r.v’s X and Y is defined as f(x, y) = x+ y, 0 < x < 1, 0 < y < 1. Compute the covariance of
X and Y .

Solution. In order to evaluate the covariance of X and Y , we need to calculate first µx and µy . So lets start with
computing the marginal pdf’s for both X and Y . Then,

fX(x) =

∫
y

f(x, y)dy =

∫ 1

0

(x+ y)dy =

[
xy +

1

2
y2

]1

0

= x+
1

2
, 0 < x < 1.

and
fY (y) = y +

1

2
, 0 < y < 1.

Secondly, we have to evaluate µx and µy , thus

µx = E[X] =

∫
x

xfX(x)dx =

∫ 1

0

x (x+ 1/2) dx =

[
x3

3
+
x2

4

]1

0

=
7

12
.

Similarly, µy = 7
12 . Now the expected value of XY is calculated by

E[XY ] =

∫
x

∫
y

xyf(x, y)dxdy =

∫ 1

0

∫ 1

0

xy(x+ y)dxdy =

∫ 1

0

∫ 1

0

(x2y + xy2)dxdy

=

∫ 1

0

[
x2y2

2
+
xy3

3

]1

0

dx =

∫ 1

0

(
x2

2
+
x

3

)
dx =

[
x3

6
+
x2

6

]1

0

=
1

3
.

Therefore, the covariance of X and Y is

Cov(X,Y ) = E[XY ]− µxµy =
1

3
−
(

7

12

)(
7

12

)
= − 1

144
.

J
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EXAMPLE 4.16

A nut company markets cans of deluxe mixed nuts containing almonds, cashews, and peanuts. Suppose the net
weight of each can is exactly 1 lb, but the weight contribution of each type of nut is random. Because the three
weights sum to 1, a joint probability model for any two gives all necessary information about the weight of the third
type. Let X = the weight of almonds in a selected can and Y = the weight of cashews. Then the region of positive
density is D = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1;x + y ≤ 1}. Now let the joint pdf for (X,Y ) be f(x, y) = 24xy,
0 ≤ x ≤ 1, 0 ≤ y ≤ 1; x+ y ≤ 1. Find the probability that the two types of nuts together make up at most 50% of
the can. Find The marginal pdf for almonds. Evaluate the expected amount of almonds and of cashews at each can.
Then find the covariance of X and Y .

Solution. - Let A = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1;x + y ≤ 0.5}, and we need to calculate the probability of event
A, that is

Pr{(X,Y ) ∈ A} =

∫∫
A

f(x, y)dxdy =

∫ 0.5

0

∫ 0.5−x

0

24xydydx = 0.0625.

- The marginal pdf for almonds is obtained by holdingX fixed at x and integrating f(x, y) along the vertical line through
x:

fX(x) =

∫ 1−x

0

f(x, y)dy =

∫ 1−x

0

24xydy = 12x(1− x)2, 0 ≤ x ≤ 1.

- The expected amount of almond at each can is obtained as:

µx = E[X] =

∫ 1

0

xfX(x)dx =

∫ 1

0

12x2(1− x)2dx =
2

5
.

Similarly, the expected amount of cashews at these cans can be easily evaluated by by replacing x by y in fX(x).
Then we get µy = 2

5 .

- Finally, to examine how those two r.v’s are related to each other, we calculate the covariance of X and Y . Then

E[XY ] =

∫ 1

0

∫ 1−x

0

xy24xydydx =
2

15
.

Thus,

Cov(X,Y ) = E[XY ]− µxµy =
2

15
−
(

2

5

)(
2

5

)
=

2

15
− 4

25
= − 2

75
.

A negative covariance is reasonable here because more almonds in the can implies fewer cashews.
J

Note: If X , Y and Z are r.v’s and a and b are constants, then

Cov(aX + bY, Z) = aCov(X,Z) + bCov(Y, Z).

4.3.1.2 Correlation Coefficient It is difficult to employ the covariance as an absolute measure of dependence because
its value depends upon the scale of measurement. This problem can be eliminated by standardizing its value and using
the correlation coefficient, ρ, a quantity related to the covariance and defined as

ρ =
Cov(X,Y )

σxσy
.

where σx and σy are the standard deviations of X and Y , respectively. The sign of the correlation coefficient is the
same as the sign of the covariance. Thus, ρ > 0 indicates that Y increases as X increases, and ρ = +1 implies perfect
correlation, with all points falling on a straight line with positive slope. A value of ρ = 0 implies zero covariance and
no correlation. A negative coefficient of correlation implies a decrease in Y as X increases, and ρ = −1 implies perfect
correlation, with all points falling on a straight line with negative slope.
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EXAMPLE 4.17

From example ??, find the correlation coefficient.

Solution. To calculate the correlation coefficient, we need to calculate the standard deviation for both X and Y , and
therefore E[X2] and E[Y 2], then

E[X2] =

∫
x

x2fX(x)dx =

∫ 1

0

x2

(
x+

1

2

)
dx =

[
x4

4
+
x3

6

]1

0

=
5

12
.

Hence

σ2
x = E[X2]− µ2

x =
5

12
−
(

7

12

)2

=
11

144
.

Similarly, σ2
y = 11

144 . Therefore,

ρ =
Cov(X,Y )

σxσy
=

−1/144√
11/144

√
11/144

= − 1

11
.

J

Theorem: If X and Y are independent r.v’s, the ρ = 0. However, if but ρ = 0 does not imply independence.

EXAMPLE 4.18

Let X and Y be discrete r.v’s with joint probability distribution as shown in the table below. Show that X and Y are
dependent but have zero covariance.

Probability function for X and Y
y \ x -1 0 1

-1 1/16 3/16 1/16
0 3/16 0 3/16
1 1/16 3/16 1/16

Solution. Calculating the marginal pdf’s yields, fX(−1) = fX(1) = 5/16 = fY (−1) = fY (1), and fX(0) = 6/16 =
fY (0). Then, we obtain the following marginal pdf’s for both X and Y :

Marginal pdf of X and Y
x fX(x) y fY (y)

-1 5/16 -1 5/16
0 6/16 0 6/16
1 5/16 1 5/16

The value f(0, 0) = 0 in the centre cell stands out. Obviously, f(0, 0) 6= fX(0)fY (0), and this is sufficient to show that
X and Y are dependent.

Again looking at the marginal probabilities, we see that E[X] = E[Y ] = 0. Also,

E[XY ] =
∑
x

∑
y

xyf(x, y)

= (−1)(0)(3/16) + (−1)(1)(1/16) + (0)(−1)(3/16)

+ (0)(0)(0) + (0)(1)(3/16) + (1)(−1)(1/16) + (1)(0)(3/16) + (1)(1)(1/16)

= (1/16)− (1/16)− (1/16) + (1/16) = 0
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Thus,
Cov(X, y) = E[XY ]− E[X]E[Y ] = 0− (0)(0) = 0

This example shows that if the covariance of two r.v’s is zero, the variables need not be independent. J

EXAMPLE 4.19

Annie and Alvie have agreed to meet for lunch between noon (0:00 p.m.) and 1:00 p.m. Denote Annie’s arrival time
by X , Alvie’s by Y , and suppose X and Y are independent with pdf’s:

fX(x) = 3x2, 0 ≤ x ≤ 1 : and fY (y) = 2y, 0 ≤ y ≤ 1.

What is the expected amount of time that the one who arrives first must wait for the other person?

Solution. First of all, the joint pdf of X and Y is found by:

f(x, y) = fX(x) · fY (y) = 3x2 × 2y = 6x2y

Assuming that X and Y are the arrival time of Annie and Alive respectively give as that the waiting time of the one who
comes first is u(X,Y ) = |X − Y |, then the expected waiting time is E[|X − Y |], and since

u(X,Y ) = |X − Y | =

{
X − Y, x− y ≥ 0⇒ x ≥ y ⇒ 0 ≤ y ≤ x ≤ 1,

Y −X, x− y < 0⇒ x < y ⇒ 0 < x < y < 1,

and then

E[|X − Y |] =

∫ 1

0

∫ x

0

(x− y)(6x2y)dydx+

∫ 1

0

∫ y

0

(y − x)(6x2y)dxdy

=
1

6
+

1

12
=

1

4
.

Therefore, the expected waiting time for anyone who comes first is 1/4 of an hour. J



CHAPTER 5

FUNCTION OF RANDOM VARIABLES

5.1 Introduction

In Chapter ?? we discussed the problem of starting with a single r.v X , forming some function of X , such as X2 or
eX , to obtain a new r.v Y = h(X), and investigating the distribution of this new r.v. We now generalize this scenario
by starting with more than a single r.v. Consider as an example a system having a component that can be replaced just
once before the system itself expires. Let X1 denote the lifetime of the original component and X2 the lifetime of the
replacement component. Then any of the following functions of X1 and X2 may be of interest to an investigator:

1. The total lifetime X1 +X2.

2. The ratio of lifetimes X1/X2; for example, if the value of this ratio is 2, the original component lasted twice as long
as its replacement.

3. The ratio X1/(X1 +X2), which represents the proportion of system lifetime during which the original component
operated.

To determine the probability distribution for a function of n random variables, X1, X2, . . . , Xn, we must find the joint
probability distribution for the r.v’s themselves. We generally assume that observations are obtained through random
sampling. We will assume throughout the remainder of this text that populations are large in comparison to the sample
size and consequently that the random variables obtained through a random sample are in fact independent of one another.
We will present three methods for finding the probability distribution for a function of random variables.

Consider r.v’sX1, X2, . . . , Xn and a function U(X1, X2, . . . , Xn), denoted simply as U . We will present two method
to find the probability function of the function of r.v’s.

Please enter \offprintinfo{(Title, Edition)}{(Author)}
at the beginning of your document.
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5.2 The Joint pdf of a Function of Random Variables

Given set of r.v’s X1, X2, . . . , Xn, consider forming new r.v’s Yi = ui(X1, X2, . . . , Xn), i = 1, . . . , k, k ≤ n.

f(x1, x2, . . . , xn) = the joint pdf of the original r.v’s,
g(y1, y2, . . . , yk) = the joint pdf of the new r.v’s.

We now focus on finding the joint distribution of these new variables. For our next study, we will use the term random
sample which is defined as:

Definition: (Random Sample): Let X1, X2, . . . , Xn be independent r.v’s each of which has the same pdf f(x), that is
fi(xi) = f(xi), i = 1, 2, . . . , n, then the joint pdf of these r.v’s f(x1, x2, . . . , xn) =

∏n
i=1 f(xi). Hence, the r.v’s

X1, X2, . . . , Xn are said to constitute a random sample (r.s) of size n from a distribution F (x).

For instant, if the two r.v’s X1 ∼ N(µ1, σ
2
1) and X2 ∼ N(µ2, σ

2
2) are independent with joint pdf

f(x, y) =

2∏
i=1

fi(xi) =

 1√
2πσ2

1

e
− 1

2

(
x1 − µ1

σ1

)2

 1√

2πσ2
2

e
− 1

2

(
x2 − µ2

σ2

)2
 .

Therefore, X1 and X2 are said to be a r.s of size two.

Definition: A function of one or more r.v’s which is not depend on any unknown parameter is called a Statistic. For
example, Y =

∑
Xi is a statistic, while Y = X − µ/σ is not a statistic unless µ and σ is known. A statistic is any

quantity whose value can be calculated from sample data. Therefore, a statistic is a random variable and will be denoted
by an upper case letter; a lower case letter is used to represent the calculated or observed value of the statistic.

Definitions: Let X1, X2, . . . , Xn be a r.s of size n from any distribution, we define

1. The statistic X̄ = 1
n

n∑
i=1

Xi is called the sample mean.

2. The statistic S2 = 1
n−1

[
n∑
i=1

(
X2
i − nX̄

)]
is called the sample variance.

5.2.1 The Method of Transformations

We will illustrate the method of transformations in two cases. The first is when the r.v’s X1, X2, . . . , Xn are discrete,
and the second case for continuous set of r.v’s X1, X2, . . . , Xn.

5.2.1.1 Discrete r.v’s Let X1, X2, . . . , Xn be n r.v’s of discrete type defined on the n-dimensional space A with
joint pdf f(x1, x2, . . . , xn). Let the r.v’s Yi = ui(X1, X2, . . . , Xn), i = 1, 2, . . . , k and k ≤ n be functions of
X1, X2, . . . , Xn. The joint pdf of Y1, Y2, . . . , Yk is required. If k < n, we will introduce additional new r.v’s Yk+1 =
uk+1(X1, X2, . . . , Xn), Yk+2 = uk+2(X1, X2, . . . , Xn), dotsYn = un(X1, X2, . . . , Xn), so that the function yi =
ui(X1, X2, . . . , Xn), i = 1, 2, . . . , n are defined to be one-to-one transformation that maps the spaceA of {Xi} onto the
space B of {Yi} with inverse transforms xi = ωi(y1, y2, . . . , yn), i = 1, 2, . . . , n. Then the joint pdf of Y1, Y2, . . . , Yn is
defined as:

g(y1, y2, . . . , yn) = f(ω1(y1, y2, . . . , yn), ω2(y1, y2, . . . , yn), . . . , ωn(y1, y2, . . . , yn)).

Therefore, the joint pdf of Y1, Y2, . . . , Yk is

g∗(y1, y2, . . . , yk) =
∑
yk+1

∑
yk+2

· · ·
∑
yn

g(y1, y2, . . . , yn).

We can also evaluate the marginal pdf of each r.v Yi using the definition of the marginal density function.



THE JOINT PDF OF A FUNCTION OF RANDOM VARIABLES 81

EXAMPLE 5.1

Let the r.v X has a pdf f(x) = x
15 , x = 1, 2, 3, 4, 5. Find the pdf of the r.v Y = 2X + 1.

Solution. The function y = 2x+ 1 defines a one-to-one transformation that maps the space A = {x : x = 1, 2, 3, 4, 5}
onto the space B = {y : y = 3, 5, 7, 9, 11} with inverse x = 1

2 (y − 1). Then the pdf of Y is

g(y) = f

(
y − 1

2

)
=

1

30
(y − 1), y = 3, 5, 7, 9, 11.

J

EXAMPLE 5.2

Let the r.v X ∼ b(n, p). What is the distribution of r.v Y = n−X?

Solution. The pdf of X is given by: f(x) =
(
n
x

)
pxqn−x, x = 0, 1, . . . , n. The function y = n− x defines a one-to-one

transform that maps the spaceA = {x : x = 0, 1, . . . , n} onto the space B = {y : y = 0, 1, . . . , n} with inverse function
of x = n− y. Then the pdf of Y is

g(y) = f(n− y) =

(
n

n− y

)
pn−yqn−(n−y) =

(
n

y

)
qypn−y, y = 0, 1, . . . , n.

Hence, the r.v Y ∼ b(n, q). J

EXAMPLE 5.3

Suppose that X1 and X2 are two independent r.v’s where X1 ∼ P (λ1) and X2 ∼ P (λ2) (i.e X1 and X2 are a r.s of
size 2). Find the distribution of the r.v Y = X1 +X2.

Solution. Since X1 and X2 are a r.s, then the joint pdf of X1 and X2 can be determined as

f(x1, x2) = f1(x1)× f2(x2) =
e−λ1λx1

1

x1!
· e
−λ2λx2

2

x2!
=
e−(λ1+λ2)λx1

1 λx2
2

x1!x2!
, xi = 0, 1, 2, . . . ; i = 1, 2.

J

Consider, beside Y = X1 +X2, Z = X2. The functions y = x1 + x2 and z = x2 define one-to-one transformation that
maps the space A = {(x1, x2) : xi = 0, 1, 2, . . . ; i = 1, 2} onto the space B = {(y, z) : 0 ≤ z ≤ y ≤ ∞}, with inverse
functions x1 = y − z and x2 = z. Then the joint pdf of Y and Z is

g(y, z) = f(y − z, z) =
e−(λ1+λ2)λy−z1 λz2

(y − z)!z!
, (y, z) ∈ B.

Now, the marginal pdf of Y is obtained by

gY (y) =
∑
z

g(y, z) = e−(λ1+λ2)

y∑
z=0

λy−z1 λz2
(y − z)!z!

=
e−(λ1+λ2)

y!

y∑
z=0

y!

(y − z)!z!
λy−z1 λz2

=
e−(λ1+λ2)

y!

y∑
z=0

(
y

z

)
λz2λ

y−z
1 =

e−(λ1+λ2)(λ1 + λ2)y

y!
, y = 0, 1, 2, . . . .

Therefore Y ∼ P (λ1 + λ2).
Note: We can prove that if X1, X2, . . . , Xn are r.s of size n and Xi ∼ P (λi), then Y =

∑n
i=1Xi ∼ P (

∑n
i=1 λi).
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EXAMPLE 5.4

Let X1 and X2 be independent r.v’s of discrete type with joint pdf f(x1, x2) = f1(x1) · f2(x2), where fi(xi) is the
marginal pdf of Xi, i = 1, 2. Consider Yi = ui(Xi), i = 1, 2 define one-to-one transformation from A onto B.
Show that the r.v’s Y1 = u1(X1) and Y2 = u2(X2) are also independent.

Solution. Given f(x1, x2) = f1(x1) · f2(x2) where f(x1, x2) is the joint pdf of X1 and X2 with fi(xi) is the marginal
pdf of Xi, i = 1, 2.

Also the functions yi = ui(xi), i = 1, 2 maps A onto B, then the inverse functions xi = ωi(yi), i = 1, 2. Then the
joint pdf of Y1 and Y2 is:

g(y1, y2) = f(ω1(y1), ω2(y2)) = f1(ω1(y1)) · f2(ω2(y2)).

J

Then, the marginal pdf of Y1 is obtained by

g1(y1) =
∑
y2

g(y1, y2) = f1(ω1(y1))
∑
y2

f2(ω2(y2)) = c1f1(ω1(y1)),

similarly, the marginal pdf of Y2 is

g2(y2) =
∑
y1

g(y1, y2) = f2(ω2(y2))
∑
y1

f1(ω1(y1)) = c2f2(ω2(y2)).

In order to verify the independence of Y1 and Y2, we need to prove that g(y1, y2) = g1(y1) · g2(y2). Therefore

g1(y1) · g2(y2) = c1f1(ω1(y1)) · c2f2(ω2(y2)) = c1c2f1(ω1(y1)) · f2(ω2(y2))

= c1c2g(y1, y2),

⇒ g(y1, y2) =
1

c1c2
g1(y1) · g2(y2).

Since g(y1, y2) is the joint pdf of Y1 and Y2, then

1 =
∑
y1

∑
y2

g(y1, y2) =
∑
y1

∑
y2

1

c1c2
g1(y1) · g2(y2) =

1

c1c2

[∑
y1

g1(y1)

][∑
y2

g2(y2)

]

=
1

c1c2
⇒ c1c2 = 1

∴g(y1, y2) = g1(y1) · g2(y2).

This implies that Y1 and Y2 are independent r.v’s.

5.2.1.2 Continuous r.v’s In the case of continuous r.v’s we assume the same environment as it was with the dis-
crete case. Let X1, X2, . . . , Xn be n r.v’s of continuous type defined on the n-dimensional space A with joint pdf
f(x1, x2, . . . , xn). Let the r.v’s Yi = ui(X1, X2, . . . , Xn), i = 1, 2, . . . , k (k ≤ n) be functions ofX1, X2, . . . , Xn. The
joint pdf of Y1, Y2, . . . , Yk is required. If k < n, we will introduce additional new r.v’s Yk+1 = uk+1(X1, X2, . . . , Xn),
Yk+2 = uk+2(X1, X2, . . . , Xn), dotsYn = un(X1, X2, . . . , Xn), so that the function yi = ui(X1, X2, . . . , Xn),
i = 1, 2, . . . , n are defined to be one-to-one transformation that maps the spaceA of {Xi} onto the space B of {Yi} with
inverse transforms xi = ωi(y1, y2, . . . , yn), i = 1, 2, . . . , n. In this case, we will need to calculate the Jacobian n × n
determinant of the first partial derivatives as:

J =
∂(x1, x2, . . . , xn)

∂(y1, y2, . . . , yn)
=

∣∣∣∣∣∣∣∣∣∣∣

∂x1

∂y1
∂x1

∂y2
. . . ∂x1

∂yn
∂x2

∂y1
∂x2

∂y2
. . . ∂x2

∂yn
...

...
. . .

...
∂xn
∂y1

∂xn
∂y2

. . . ∂xn
∂yn

∣∣∣∣∣∣∣∣∣∣∣
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Then the joint pdf of Y1, Y2, . . . , Yn is defined as:

g(y1, y2, . . . , yn) = |J | × f(ω1(y1, y2, . . . , yn), ω2(y1, y2, . . . , yn), . . . , ωn(y1, y2, . . . , yn)),

and finally, the joint pdf of Y1, Y2, . . . , Yk is

g∗(y1, y2, . . . , yk) =

∫
yk+1

∫
yk+2

· · ·
∫
yn

g(y1, y2, . . . , yn)dyk+1dyk+2 . . . dyn.

We can also evaluate the marginal pdf of each r.v Yi using the definition of the marginal density function.

EXAMPLE 5.5

Let the r.v X has a pdf f(x) = 3x2, 0 < x < 1. Find the pdf of the r.v Y = X3 and evaluate Pr( 1
2 < Y < 3

4 ).

Solution. The function y = x3 is a one-to-one function from A = {x : 0 < x < 1} onto B = {y : 0 < y < 1} with
inverse function x = y1/3. The Jacobian in the 1-dimensional case is obtained as

J =
∂x

∂y
=

1

3
y−2/3.

Therefore, the pdf of the r.v Y is

g(y) = f(y1/3)|J | = 3(y1/3)2 1

3
y−2/3 = 1, 0 < y < 1.

Now, to evaluate the probability Pr( 1
2 < Y < 3

4 ),

Pr

(
1

2
< Y <

3

4

)
=

∫ 3/4

1/2

dy = y
∣∣∣3/4
1/2

=
3

4
− 1

2
=

1

4
.

J

EXAMPLE 5.6

Let the r.v X ∼ U(0, 1). Find and name the distribution of the r.v Y = −2 lnX .

Solution. The function y = −2 lnx is a one-to-one function that maps A = {x : 0 < x < 1} onto B = {y : 0 < y <

∞}, with inverse function x = e−
1
2y . The Jacobian,

J =
∂x

∂y
= −1

2
e−

1
2y.

Then, the pdf of Y can be obtained as

g(y) = |J |f(e−
1
2y) = (1)

1

2
e−

1
2y =

1

2
e−

1
2y, 0 < y <∞

Hence, the r.v Y ∼ Exp(2). J
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EXAMPLE 5.7

Let X1 and X2 be a r.s of size 2 from N(0, 1). Define the r.v’s Y1 = X1 + X2 and Y2 = X1 −X2. Find the joint
pdf of Y1 and Y2 and show that they are independent.

Solution. The joint pdf of X1 and X2 is:

f(x1, x2) = f1(x1)× f2(x2) =
1

2π
e−

1
2π (X2

1+X2
2 ), −∞ < xi <∞; i = 1, 2.

The functions y1 = x1 + x2, y2 = x1 − x2 define as one-to-one functions that map the space A = {(x1, x2) : −∞ <
xi < ∞; i = 1, 2} onto the space B = {(y1, y2) : −∞ < yi < ∞; i = 1, 2}, with inverses x1 = 1

2 (y1 + y2) and
x2 = 1

2 (y1 − y2). The Jacobian can be calculated as

J =
∂(x1, x2)

∂(y1, y2)
=

∣∣∣∣∣ ∂x1

∂y1
∂x1

∂y2
∂x2

∂y1
∂x2

∂y2

∣∣∣∣∣ =

∣∣∣∣∣ 1
2

1
2

1
2 − 1

2

∣∣∣∣∣ = −1

4
− 1

4
= −1

2
.

Therefore, the joint pdf of y1 and y2 is

g(y1, y2) = f

(
1

2
(y1 + y2),

1

2
(y1 − y2)

)
× |J |.

taking the term x2
1 + x2

2:

x2
1 + x2

2 =
1

4
(y1 + y2)2 +

1

4
(y1 − y2)2 =

1

4

[
y2

1 + 2y1y2 + y2
2 + y2

1 − 2y1y2 + y2
2

]
=

1

4
(2y2

1 + 2y2
2) =

1

2
(y2

1 + y2
2).

Therefore,

g(y1, y2) =
1

4π
e−

1
4 (y21+y22), −∞ < yi <∞; i = 1, 2.

To verify if Y1 and Y2 are independent or not, we need to find the marginal pdf’s for both Y1 and Y2. Then, the marginal
pdf of Y1 is

g1(y1) =

∫
y2

g(y1, y2)dy2 =
1

4π
e−

1
4y

2
1

∫ ∞
−∞

e−
1
4y

2
2dy2 =

√
2π
√

2

4π
e−

1
4y

2
1

∫ ∞
−∞

1√
2π
√

2
e−

1
4y

2
2dy2

=
1√

2π
√

2
e−

1
2

y21
2 −∞ < y1 <∞.

That is Y1 ∼ N(0, 2). Similarly, the marginal pdf of Y2 is g2(y2) = 1√
2π
√

2
e−

1
2

y22
2 , −∞ < y1 < ∞, which means that

Y2 ∼ N(0, 2). Then,

g1(y1) · g2(y2) =
1√

2π
√

2
e−

1
2

y21
2 × 1√

2π
√

2
e−

1
2

y22
2 =

1

4π
e−

1
4 (y21+y22) = g(y1, y2).

Therefore, Y1 and Y2 are independent r.v’s. J

EXAMPLE 5.8

Let X1 and X2 be a r.s of size 2 from U(0, 1). Define the r.v’s Y1 = X1 + X2 and Y2 = X1 −X2. Find the joint
pdf of Y1 and Y2. Also, find marginal pdf’s for both Y1 and Y2.

Solution. The joint pdf of X1 and X2 is f(x1, x2) = 0, 0 < xi < 1, i = 1, 2.
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Figure 5.1 The Sample Space A and B

The functions y1 = x1 + x2, y2 = x1 − x2 define a one-tp-one transformation that maps A = {(x1, x2) : 0 < x1 <
1, 0 < x2 < 1} on to the space B in the y1y2-plane with inverses:

x1 =
1

2
(y1 + y2) and x2 =

1

2
(y1 − y2).

We determine the boundaries of B as follows:

x1 = 0⇒ 1

2
(y1 + y2) = 0⇒ y2 = −y1

x1 = 1⇒ 1

2
(y1 + y2) = 1⇒ y2 = 2− y1

x2 = 0⇒ 1

2
(y1 − y2) = 0⇒ y2 = y1

x2 = 1⇒ 1

2
(y1 − y2) = 1⇒ y2 = y1 − 2

and

J =
∂(x1, x2)

∂(y1, y2)
=

∣∣∣∣∣ 1
2

1
2

1
2 − 1

2

∣∣∣∣∣ = −1

2

Then, the joint pdf of Y1 and Y2 is

g(y1, y2) = f

(
y1 + y2

2
,
y1 − y2

2

)
|J | = 1

2
, (y1, y2) ∈ B.

The marginal pdf of Y1 could be found as

g1(y1) =

∫
y2

g(y1, y2)dy2 =



y1∫
y2=−y1

1
2dy2 = y1, 0 ≤ y1 < 1

2−y1∫
y2=y1−2

1
2dy2 = 2− y1, 1 ≤ y1 < 2

and the marginal pdf of Y2 is

g2(y2) =

∫
y1

g(y1, y2)dy1 =



y2+2∫
y1=−y2

1
2dy1 = y2 + 1, −1 ≤ y2 < 0

2−y2∫
y1=y2

1
2dy1 = 1− y2, 0 ≤ y2 < 1
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J

EXAMPLE 5.9

Consider n = 3 identical components with independent lifetimes X1, X2, X3, each having an exponential distribu-
tion with parameter 1/λ. If the first component is used until it fails, replaced by the second one which remains in
service until it fails, and finally the third component is used until failure, then the total lifetime of these components
is Y = X1 +X2 +X3. Find the distribution of total lifetime.

Solution. The joint pdf of X1, X2 and X3 is f(x1, x2, x3) = λ3e−λ(x1+x2+x3), 0 < xi < ∞, i = 1, 2, 3. We define
two other new variables Y1 = X1 and Y2 = X1 + X2 (so that Y1 < Y2 < Y ). Then the functions y = x1 + x2 + x3,
y2 = x1 + x2 and y1 = x1 define a one-tp-one transformation that maps A = {(x1, x2, x3) : 0 < xi < ∞, i = 1, 2, 3}
onto the space B = {(y1, y2, y3) : 0 < y1 < y2 < y <∞}, with inverses:

x1 = y1, x2 = y2 − y1 and x3 = y − y2.

The Jacobian is calculated as

J =
∂(x1, x2, x3)

∂(y1, y2, y)
=

∣∣∣∣∣∣∣
1 0 0

−1 1 0

0 −1 1

∣∣∣∣∣∣∣ = 1

Then, the joint pdf of Y1, Y2 and Y is

g(y1, y2, y) = f(y1, y2 − y1, y − y2)|J | = λ3e−λy, 0 < y1 < y2 < y <∞.

Finally, the marginal pdf of Y is

g∗(y) =

∫
y1

∫
y2

g(y1, y2, y)dy1dy2 =

∫ y

0

∫ y

y1

λ3e−λydy1dy2 =

∫ y

0

λ3e−λy
[
y2

]y
y1
dy1

=

∫ y

0

λ3e−λy(y − y1)dy1 = λ3e−λy
[
yy1 −

y2
1

2

]y
0

= λ3e−λy
[
y2 − y2

2

]
=
λ3

2
y2e−λy, 0 < y <∞.

J

5.3 Order Statistics

Many functions of random variables of interest in practice depend on the relative magnitudes of the observed variables.
For instance, we may be interested in the fastest time in an automobile race or the heaviest mouse among those fed on
a certain diet. Thus, we often order observed random variables according to their magnitudes. The resulting ordered
variables are called order statistics.

Formally, let X1, X2, . . . , Xn denote independent continuous random variables with distribution function F (x) and
density function f(x). We denote the ordered random variables Xi by Y1, Y2, . . . , Yn, where Y1 ≤ Y2 ≤ · · · ≤ Yn.
where

Y1 = the smallest among X1, X2, . . . , Xn

Y2 = the second smallest among X1, X2, . . . , Xn

...
Y n = the largest among X1, X2, . . . , Xn
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i.e, Y1 = min{X1, X2, . . . , Xn} and Yn = max{X1, X2, . . . , Xn}.

Notes:

1. In most applications, the unordered set of r.v’s {Xi} is usually taken to be a r.s of size n.

2. We only consider the continuous type of r.v’s.

5.3.1 The distribution of Order Statistics

Let X1, X2, . . . , Xn be a r.s of size n from a continuous distribution having a pdf of f(x) and cdf F (x), where the joint
pdf of those r.v’s is

f(x1, x2, . . . , xn) =

n∏
i=1

f(xi), −∞ < xi <∞; i = 1, 2, . . . , n.

Suppose that Y1, Y2, . . . , Yn is a ordered sample of the original r.s, that is Y1 = min{X1, X2, . . . , Xn} and Yn =
max{X1, X2, . . . , Xn}. The probability density functions for Y1 and Yn can be found using the method of distribution
functions. We will derive the density function of Yn first. Because Yn is the maximum of X1, X2, . . . , Xn, the event
(Yn ≤ y) will occur if and only if the events (Xi ≤ y) occur for every i = 1, 2, . . . , n. That is,

Pr(Yn ≤ y) = Pr(X1 ≤ y,X2 ≤ y, . . . , Xn ≤ y).

Because the Xi are independent and Pr(Xi ≤ y) = F (y) for i = 1, 2, . . . , n, it follows that the distribution function
of Yn is given by

FYn(y) = Pr(Yn ≤ y) = Pr(X1 ≤ y) Pr(X2 ≤ y) . . .Pr(Xn ≤ y) = [F (y)]n.

Letting gn(y) denote the density function of Yn, we see that, on taking derivatives of both sides,

gn(y) = n[F (y)]n−1f(y).

The density function for Y1 can be found in a similar manner. The distribution function of Y1 is

FY1(y) = Pr(Y1 ≤ y) = 1− Pr(Y1 > y).

Because Y1 is the minimum of X1, X2, . . . , Xn, it follows that the event (Y1 > y) occurs if and only if the events
(Xi > y) occur for i = 1, 2, . . . , n. Because the Xi are independent and Pr(Yi > y) = 1F (y) for i = 1, 2, . . . , n, we
see that

FY1(y) = Pr(Y1 ≤ y) = 1− Pr(Y1 > y)

= 1− Pr(X1 > y,X2 > y, . . . ,Xn > y)

= 1− [Pr(X1 > y) Pr(X2 > y) . . .Pr(Xn > y)] = 1− [1− F (y)]n.

Thus, if g1(y) denotes the density function of Y1, differentiation of both sides of the last expression yields

g1(y) = n[1− F (y)]n−1f(y).

In general, The marginal pdf of the kth order statistic Yk could be derived as

gk(y) =
n!

(k − 1)!(n− k)!
[F (y)]k−1[1− F (y)]n−kf(y), −∞ < y <∞.
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EXAMPLE 5.10

Let Y1 < Y2 < Y3 < Y4 be the order statistics of a r.s of size 4 from a distribution having a pdf of f(x) = 2x,
0 < x < 1. Compute Pr(Y3 > 1/2) and E[Y3].

Solution. Since the pdf of the r.s is f(x) = 2x, 0 < x < 1. Then we can find the cdf as

F (x) =

∫ x

−∞
f(τ)dτ =

∫ x

0

2τdτ = τ
∣∣∣x
0

= x2.

Now, since n = 4 and k = 3, then the pdf of Y3 is

g3(y) =
4!

2!1!
y4(1− y2)2y = 24y5(1− y2), 0 < y < 1.

Hence, the probability

Pr

(
Y3 >

1

2

)
=

∫ 1

1/2

g3(y)dy =

∫ 1

1/2

24y5(1− y2)dy = 24

[
y6

6
− y8

8

]1

1/2

= 0.949.

The mean value of Y3 is

E[Y3] =

∫ 1

0

yg3(y)dy = 24

∫ 1

0

y6(1− y2)dy = 24

[
y7

7
− y9

9

]1

0

=
16

21
.

J

EXAMPLE 5.11

Let X1, X2, . . . , Xn be a r.s of size n from Exp(λ). Find the distribution of the first order statistics Y1.

Solution. Since X ∼ Exp(λ), then f(x) = 1
λe
−x/λ, 0 < x <∞, and the cdf F (x) = 1− e−x/λ. Therefore, the pdf of

Y1 is given by

g1(y) = n[1− F (y)]n−1f(y) = n
[
1− 1 + e−

y
λ

]n−1 1

λ
e−

y
λ =

n

λ

[
e−

y
λ

]n−1

e−
y
λ =

n

λ
e−

n
λ y, 0 < y <∞.

J

EXAMPLE 5.12

Electronic components of a certain type have a length of life X , with probability density given by: f(x) =
(1/100)e−x/100, x > 0. (Length of life is measured in hours.) Suppose that two such components operate in-
dependently and in series in a certain system (hence, the system fails when either component fails). Find the density
function for Y , the length of life of the system.

Solution. Because the system fails at the first component failure, Y = min{X1, X2}, whereX1 andX2 are independent
r.v’s with the given density. Then, because F (x) = 1− e−x/100, for x ≥ 0,

g1(y) = n[1− F (y)]n−1f(y) = 2e−
y

100
e−

y
100

100
=

1

50
e−

y
50 , y > 0.

Thus, the minimum of two exponentially distributed random variables has an exponential distribution. Notice that the
mean length of life for each component is 100 hours, whereas the mean length of life for the system is E[Y ] = 50 =
100/2. J
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EXAMPLE 5.13

Let X denote the contents of a one-gallon container, and suppose that its pdf is f(x) = 2x for 0 < x < 1 (and 0
otherwise) with corresponding cdf F (x) = x2 in the interval of positive density. Consider a random sample of four
such containers. Determine the expected value of Y4 − Y1, the difference between the contents of the most-filled
container and the least-filled container.

Solution. To determine Y4 − Y1, the sample range, The pdf’s of Y4 and Y1 are

g4(y) = n[F (y)]n−1f(y) = 4(y2)3 · 2y = 8y7, 0 ≤ y ≤ 1,

and
g1(y) = n[1− F (y)]n1f(y) = 4(1− y2)3 · 2y = 8y(1− y2)3, 0 ≤ y ≤ 1.

Therefore, the expected value of Y4 − Y1 is

E[Y4 − Y1] = E[Y4]− E[Y1] =

∫ 1

0

y · 8y7dy −
∫ 1

0

y · 8y(1− y2)3dy = 0.889− 0.406 = 0.483.

If random samples of four containers were repeatedly selected and the sample range of contents determined for each one,
the long run average value of the range would be 0.483. J

5.3.2 Joint Distribution of the Order Statistics

Consider a r.s X1, X2, . . . , Xn of size n with a joint pdf

f(x1, x2, . . . , xn) = f(x1) · f(x2) . . . f(xn),

and f(xi) is the marginal pdf of each r.v Xi. Then joint pdf of r.v’s Y1, Y2, . . . , Yn is presented as:

g(y1, y2, . . . , yn) = n!f(y1, y2, . . . , yn) = n!

n∏
i=1

f(yi), −∞ < y1 < y2 < · · · < yn <∞.

We can also derive the joint pdf of any two order statistics, if h and k are two integers such that 1 ≤ h < k ≤ n, the
joint density of Yh and Yk is given by

gh,k(yh, yk) =
n!

(h− 1)!(k − h− 1)!(n− k)!
[F (yh)]h−1[F (yk)− F (yh)]k−h−1[1− F (yk)]n−kf(yh)f(yk),

−∞ < xh < xk <∞

EXAMPLE 5.14

If Y1 < Y2 < · · · < Yn be the order statistics of a r.s of size n from N(µ, σ2). Find the joint pdf of Y1, Y2, . . . , Yn.

Solution. The joint pdf of the order statistics Y1, Y2, . . . , Yn is

g(y1, y2, . . . , yn) = n!

n∏
i=1

f(yi) = n!(2π)−
n
2 σ−ne−

1
2σ2

∑n
i=1(yi−µ)2 , −∞ < y1 < y2 < · · · < yn.

J
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EXAMPLE 5.15

Let Y1, Y2, Y3 be the order statistics of a r.s of size 3 from U(0, 1).

1. Find the joint pdf of Y1 and Y3.

2. Find the marginal pdf of Z = Y3 − Y1.

Solution. Since Y1, Y2, Y3 be the order statistics of a r.s of size 3 from U(0, 1), then: f(x) = 1, 0 < x < 1. and

F (x) =


0, x ≤ 0

x, 0 < x < 1

1, x ≥ 1

1. In order to get the joint pdf of Y1 and Y3, we have n = 3, h = 1 and k = 3. Therefore,

g1,3(y1, y3) =
3!

0!1!0!
[F (y1)]0[F (y3)− F (y1)]1[1− F (y3)]0f(y1)f(y3) = 6(y3 − y1), 0 < y1 < y3 < 1.

2. We have the transformation Z = Y3 − Y1, set W = Y3. Now, the one-to-one functions z = y3 − y1, w = y3 map
the space A = {(y1, y3) : 0 < y1 < y3 < 1} onto B = {(z, w) : 0 < z < w < 1}, with inverses y1 = w − z and
y3 = w, and

J =
∂(y1, y3)

∂(z, w)
=

∣∣∣∣∣ −1 1

0 1

∣∣∣∣∣ = −1.

Then, the joint pdf of Z and W is

h(z, w) = g1,3(w − z, w)|J | = 6(w − (w − z)) = 6z, 0 < z < w < 1.

The marginal pdf of Z is

h1(z) =

∫
w

h(z, w)dw =

∫ 1

z

6zdw = 6z
[
w
]1
z

= 6z(1− z), 0 < z < 1.

J



CHAPTER 6

SAMPLING DISTRIBUTIONS

6.1 Introduction

This chapter helps make the transition between probability and inferential statistics. Given a sample of n observations
from a population, we will be calculating estimates of the population mean, median, standard deviation, and various
other population characteristics (parameters). Prior to obtaining data, there is uncertainty as to which of all possible
samples will occur. Because of that, estimates such as x̄, x̃ and s will vary from one sample to another. The behaviour
of such estimates in repeated sampling is described by what are called sampling distributions. Any particular sampling
distribution will give an indication of how close the estimate is likely to be to the value of the parameter being estimated.
We will start with some important definition and theorems that are needed in what follows.

Recall the definitions from Chapter‘??, which are

Definition: A function of one or more r.v’s which is not depend on any unknown parameter is called a Statistic. For
example, Y =

∑
Xi is a statistic, while Y = X − µ/σ is not a statistic unless µ and σ is known. A statistic is any

quantity whose value can be calculated from sample data. Therefore, a statistic is a random variable and will be denoted
by an upper case letter; a lower case letter is used to represent the calculated or observed value of the statistic.

Definitions: Let X1, X2, . . . , Xn be a r.s of size n from any distribution, we define

1. The statistic X̄ = 1
n

n∑
i=1

Xi is called the sample mean.

2. The statistic S2 = 1
n−1

[
n∑
i=1

(
X2
i − nX̄

)]
is called the sample variance.

Please enter \offprintinfo{(Title, Edition)}{(Author)}
at the beginning of your document.
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EXAMPLE 6.1

The time that it takes to serve a customer at the cash register in a mini-market is a r.v having an exponential distribu-
tion with parameter 1/λ. Suppose X1 and X2 are service times for two different customers, assumed independent
of each other. Consider the total service time To = X1 +X2 for the two customers, also a statistic. The cdf of To is,
for t ≥ 0,

FTo(t) = Pr(To ≤ t) = Pr(X1 +X2 ≤ t) =

∫∫
{(x1,x2):x1+x2≤t}

f(x1, x2)dx1dx2

=

∫ t

0

∫ t−x1

0

λe−λx1 · λe−λx2dx2dx1 =

∫ t

0

(λe−λx1 − λe−λt)dx1 = 1− e−λt − λte−λx1

The pdf of To is obtained by differentiating FTo(t):

fTo(t) = λ2te−λt, t ≥ 0. (6.1)

This is a gamma pdf (α = 2 and β = 1/λ).
The pdf of X̄ = To/2 can be obtained by the cdf method of Section as

fX̄(x̄) = 4λ2x̄e−2λx̄, x̄ ≥ 0. (6.2)

The mean and variance of the underlying exponential distribution are µ = 1/λ and σ2 = 1/λ2. Using expres-
sions‘(??) and (??), it can be verified that E[X̄] = 1/λ, V ar(X̄) = 1/(2λ2), E[To] = 2/λ and V ar(To) = 2/λ2.
These results again suggest some general relationships between means and variances of X̄ , To, and the underlying
distribution.

6.2 Sampling Distributions Related to the Normal Distribution

We have already noted that many phenomena observed in the real world have relative frequency distributions that can be
modelled adequately by a normal probability distribution. Thus, in many applied problems, it is reasonable to assume that
the observable random variables in a random sample, X1, X2, . . . , Xn, are independent with the same normal density
function. We present it formally in the following theorem.

Theorem 1:

Let X1, X2, . . . , Xn be independent r.v’s with mgf of Xi, i = 1, 2, . . . , n is MXi(ti). Then the r.v Y =
∑n
i=1 kiXi has

an mgf MY (t) =
∏n
i=1MXi(ti).

Proof :

In order to evaluate the mgf of Y =
∑n
i=1 kiXi, we consider

MY (t) = E
[
etY
]

= E
[
et
∑n
i=1 kiXi

]
= E

[
n∏
i=1

etkiXi

]

=

n∏
i=1

E
[
etkiXi

]
=

n∏
i=1

MXi(kit).

Theorem 2:
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Let X1, X2, . . . , Xn be independent r.v’s where Xi ∼ N(µi, σ
2
i ), i = 1, 2, . . . , n. Then the r.v Y =

n∑
i=1

kiXi has a

normal distribution, N
(

n∑
i=1

kiµi,
n∑
i=1

k2
i σ

2
i

)
.

Proof :

Since each Xi ∼ N(µi, σ
2
i ), then the mgf of any Xi is MXi(ti) = eµiti+

1
2σ

2
i t

2
i , for each i = 1, 2, . . . , n.

If MY (t) is the mgf of Y , the according to theorem 1,

MY (t) =

n∏
i=1

MXi(kit) =

n∏
i=1

eµikit+
1
2σ

2
i k

2
i t

2

= e(
∑n
i=1 kiµi)t+

1
2 (
∑n
i=1 k

2
i σ

2
i )t2 ,

Which is the mgf of the r.v Y ∼ N(
∑n
i=1 kiµi,

∑n
i=1 k

2
i σ

2
i )

Note: If X1, X2, . . . , Xn from theorem 2 represent a r.s of size n from N(µ, σ2), then the r.v

Y =

n∑
i=1

kiXi ∼ N

(
µ

n∑
i=1

ki, σ
2

n∑
i=1

k2
i

)
.

Theorem 3: (The Distribution of X̄)

Let X1, X2, . . . , Xn be a random sample of size n from a normal distribution with mean µ and variance σ2. Then
X̄ = 1

n

∑n
i=1Xi is normally distributed with mean µX̄ = µ and variance σ2

X̄
= σ2/n, i.e X̄ ∼ N(µ, σ2/n).

Proof :

Since Xi ∼ N(µ, σ2), and X̄ = 1
n

∑n
i=1Xi =

∑n
i=1

1
nXi. Then, according Theorem 2, taking ki = 1/2,

X̄ ∼ N

(
n∑
i=1

1

n
µ,

n∑
i=1

1

n2
σ2

)
≡ N

(
µ, σ2/n

)
.

EXAMPLE 6.2

X1, X2, . . . , X25 be a r.s of size 25 from N(75, 100). Find Pr(71 < X̄ < 79).

Solution. We have n = 25, µ = 75 and σ2 = 100, and since each Xi ∼ N(75, 100), then according Theorem 2

X̄ ∼ N(70, 100/25) ≡ N(75, 4).

Therefore,

Pr(71 < X̄ < 79) = Pr

(
71− 75

2
<
X̄ − 75

2
<

79− 75

2

)
= Pr(−2 < Y < 2)

= 2 Pr(Y < 2)− 1 = 2(0.977)− 1 = 0.954

J
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EXAMPLE 6.3

A bottling machine can be regulated so that it discharges an average of µ ounces per bottle. It has been observed
that the amount of fill dispensed by the machine is normally distributed with σ = 1 ounce. A sample of n = 9
filled bottles is randomly selected from the output of the machine on a given day (all bottled with the same machine
setting), and the ounces of fill are measured for each. Find the probability that the sample mean will be within 0.3
ounce of the true mean µ for the chosen machine setting.

Solution. IfX1, X2, . . . , X9 denote the ounces of fill to be observed, then we know that theXi’s are normally distributed
with mean µ and variance σ2 = 1 for i = 1, 2, . . . , 9. Therefore, by Theorem 2, X̄ possesses a normal sampling
distribution with mean µX̄ = µ and variance σ2

X̄
= σ2/n = 1/9. We want to find

Pr(|X̄ − µ| ≤ 0.3) = Pr(−0.3 ≤ X̄ − µ ≤ 0.3) = Pr

(
− 0.3

σ/
√
n
≤ X̄ − µ
σ/
√
n
≤ 0.3

σ/
√
n

)
= Pr

(
− 0.3

1/
√

9
≤ Z ≤ 0.3

1/
√

9

)
= Pr(−0.9 ≤ Z ≤ 0.9) = 2(0.1841)− 1 = 0.6318.

Thus, the probability is only 0.6318 that the sample mean will be within 0.3 ounce of the true population mean. J

EXAMPLE 6.4

The time that it takes a randomly selected rat of a certain subspecies to find its way through a maze is a normally
distributed r.v with µ = 1.5 min and σ = 0.35 min. Suppose five rats are selected. Let X1, . . . , X5 denote their
times in the maze. Assuming the Xi’s to be a random sample from this normal distribution, what is the probability
that the total time To = X1 + · · · + X5 for the five is between 6 and 8 min? Determination of the probability that
the sample average time X is at most 2.0 min.

Solution. By Theorem 2, To has a normal distribution with µo = nµ = 5(1.5) = 7.5 and variance σ2
o = nσ2 =

5(0.1225) = 0.6125, so σo = 0.783. To standardise To, subtract µo and divide by σo:

Pr(6 ≤ To ≤ 8) = Pr

(
6− 7.5

0.783
≤ Z ≤ 8− 7.5

0.783

)
= Pr(−1.92 ≤ Z ≤ 0.64) = 0.7115

To determination of the probability that the sample average time X (a normally distributed variable) is at most 2 min,
we require µX̄ = µ = 1.5 and σX̄ = σ/

√
n = 0.35/

√
5 = 0.1565. Then

Pr(X̄ ≤ 2) = Pr

(
Z ≤ 2− 1.5

0.1565

)
= Pr(Z ≤ 3.19) = 0.9993.

J

Theorem 4

Let X1, X2, . . . , Xn be a r.s of size n from a normal distribution with mean µ and variance σ2. Then Zi = (Xi − µ)/σ
are independent, standard normal random variables, i = 1, 2, . . . , n, and

n∑
i=1

Z2
i =

n∑
i=1

(
Xi − µ
σ

)2

has a χ2 distribution with n degrees of freedom (df).



THE CENTRAL LIMIT THEOREM 95

EXAMPLE 6.5

If Z1, Z2, . . . , Z6 denotes a r.s from the standard normal distribution, find a number b such that

Pr

(
n∑
i=1

Z2
i ≤ b

)
= 0.95.

Solution. By Theorem 4,
∑6
i=1 Z

2
i has a χ2 distribution with 6 df. Looking at the tables, in the row headed 6 df and the

column headed χ2
0.05, we see the number 12.5916. Thus,

Pr

(
6∑
i=1

Z2
i > 12.9516

)
= 0.05 ≡ Pr

(
6∑
i=1

Z2
i ≤ 12.9516

)
= 0.95,

and b = 12.5916 is the 0.95 quantile (95th percentile) of the sum of the squares of six independent standard normal
random variables. J

Theorem 5: (The Distribution of (n−1)S2

σ2 )

Let X1, X2, . . . , Xn be a random sample of size n from a normal distribution with mean µ and variance σ2. Then

(n− 1)S2

σ2
=

1

σ2

n∑
i=1

(Xi − X̄)2

has a χ2 distribution with (n− 1) df. Also, X̄ and S2 are independent r.v’s, i.e, (n−1)S2

σ2 ∼ χ2(n− 1).

EXAMPLE 6.6

Let X1, X2, . . . , X6 be a r.s of size 6 from N(µ, 10). Find Pr(2.3 < S2 < 22.2)

Solution. Since Xi ∼ N(µ, 10), for i = 1, 2, . . . , 6. Then, according Theorem 5, (n−1)S2

σ2 = 5S2

10 = S2

2 ∼ χ2(5).
Therefore,

Pr(2.3 < S2 < 22.2) = Pr

(
2.3

2
<
S2

2
<

22.2

2

)
= Pr(1.15 < Y < 11.1)

= Pr(Y < 11.1)− Pr(Y < 1.15) = 0.95− 0.05 = 0.9.

J

6.3 The Central Limit Theorem

If we sample from a normal population, Theorem 3 tells us that X̄ has a normal sampling distribution. But what can
we say about the sampling distribution of X̄ if the variables Xi are not normally distributed? Fortunately, X̄ will have
a sampling distribution that is approximately normal if the sample size is large. The formal statement of this result is
called the central limit theorem.

Theorem:(The Central Limit Theorem)

Let X1, X2, . . . , Xn be a random sample from a distribution with mean µ and variance σ2. Then, in the limit as n→∞,
the standardised versions of X̄ and To have the standard normal distribution. That is,

lim
n→∞

Pr

(
X̄ − µ
σ/
√
n
≤ z
)

= Pr(Z ≤ z)
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or

lim
n→∞

Pr

(
To − nµ
σ
√
n
≤ z
)

= Pr(Z ≤ z)

on another words,

Y =
X̄ − µ
σ/
√
n

=
To − nµ
σ
√
n
∼ N(0, 1).

EXAMPLE 6.7

Let X1, X2, . . . , Xn be a r.s of size n = 75 from U(0, 1). Approximate Pr(0.45 < X̄ < 0.55), where X̄ is the
sample mean.

Solution. Since X ∼ U(0, 1), then µ = 1
2 and σ2 = 1

12 . Then according to the central limit theorem, the r.v Y = X̄−µ
σ/
√
n

has a limiting N(0, 1), that is

Y =

√
n(X̄ − µ)

σ
=

√
75(X̄ − µ)√

1/12
=
√

(75)(12)(X̄ − 0.5) = 30(X̄ − 0.5).

The approximate value of

Pr(0.45 < X̄ < 0.55) = Pr[30(0.45− 0.5) < 30(X̄ − 0.5) < 30(0.55− 0.5)]

= Pr(−1.5 < Y < 1.5) = 2 Pr(Y ≤ 1.5)− 1

= 2(0.933)− 1 = 0.866.

J

EXAMPLE 6.8

The service times for customers coming through a checkout counter in a retail store are independent random variables
with mean 1.5 minutes and variance 1.0. Approximate the probability that 100 customers can be served in less than
2 hours of total service time.

Solution. If we let Xi denote the service time for the ith customer, then we want

Pr

(
100∑
i=1

Xi ≤ 120

)
= Pr

(
X̄ ≤ 120

100

)
= Pr(X̄ ≤ 1.2).

Because the sample size is large, the central limit theorem tells us that X̄ is approximately normally distributed with
mean µX̄X̄ = µ = 1.5 and variance σ2

X̄
= σ2/n = 1/100. Therefore, using the tables, we have

Pr(X̄ ≤ 1.2) = Pr

(
X̄ − 1.5

1/
√

100
≤ 1.2− 1.5

1/
√

100

)
≈ Pr[Z ≤ (1.2− 1.5)10] = Pr(Z ≤ −3) = 0.0013.

Thus, the probability that 100 customers can be served in less than 2 hours is approximately 0.0013. This small proba-
bility indicates that it is virtually impossible to serve 100 customers in only 2 hours. J



CHAPTER 7

POINT ESTIMATION

7.1 Introduction

Given a parameter of interest, such as a population mean µ or population proportion p, the objective of point estimation
is to use a sample to compute a number that represents in some sense a good guess for the true value of the parameter.
The resulting number is called a point estimate. In Section 7.1, we present some general concepts of point estimation. In
Section 7.2, we describe and illustrate two important methods for obtaining point estimates: the method of moments and
the method of maximum likelihood.

Obtaining a point estimate entails calculating the value of a statistic such as the sample mean X̄ or sample standard
deviation S. We should therefore be concerned that the chosen statistic contains all the relevant information about the
parameter of interest. The idea of no information loss is made precise by the concept of sufficiency.

7.2 General Concepts and Criteria

Statistical inference is frequently directed toward drawing some type of conclusion about one or more parameters (popu-
lation characteristics). To do so requires that an investigator obtain sample data from each of the populations under study.
Conclusions can then be based on the computed values of various sample quantities.

Definition: A Point Estimator of a parameter θ is a single number that can be regarded as a sensible value for θ. A
point estimate is obtained by selecting a suitable statistic and computing its value from the given sample data. The
selected statistic is called the point estimator of θ.

Notes:

1. we will denote to the estimate of an unknown parameter θ by θ̂.

Please enter \offprintinfo{(Title, Edition)}{(Author)}
at the beginning of your document.
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2. Many different estimators (rules for estimating) may be obtained for the same population parameter.

3. The sample mean X̄ = 1
n

∑n
i=1Xi is one possible point estimator of the population mean µ.

EXAMPLE 7.1

An automotive manufacturer has developed a new type of bumper, which is supposed to absorb impacts with less
damage than previous bumpers. The manufacturer has used this bumper in a sequence of 25 controlled crashes
against a wall, each at 10 mph, using one of its compact car models. Let X = the number of crashes that result in
no visible damage to the automotive. The parameter to be estimated is p = the proportion of all such crashes that
result in no damage [alternatively, p = Pr(no damage in a single crash)]. If X is observed to be x = 15, the most
reasonable estimator and estimate are

estimator p̂ =
X

n
estimate =

x

n
=

15

25
= 0.6

If for each parameter of interest there were only one reasonable point estimator, there would not be much to point
estimation. In most problems, though, there will be more than one reasonable estimator.

7.2.1 The Bias and Mean Square Error of Point Estimators

Suppose we have two measuring instruments; one instrument has been accurately calibrated, but the other systematically
gives readings smaller than the true value being measured. When each instrument is used repeatedly on the same object,
because of measurement error, the observed measurements will not be identical. However, the measurements produced
by the first instrument will be distributed about the true value in such a way that on average this instrument measures
what it purports to measure, so it is called an unbiased instrument. The second instrument yields observations that have
a systematic error component or bias. In other words, we would like the mean or expected value of the distribution of
estimates to equal the parameter estimated; that is, E[θ̂] = θ. Point estimators that satisfy this property are said to be
unbiased.

Definition: Let θ̂ be a point estimator for a parameter θ. Then θ̂ is an unbiased estimator if E[θ̂] = θ. If E[θ̂] 6= θ, θ̂ is
said to be biased. the difference B(θ̂) = E[θ̂]− θ is called the bias of θ̂.

In the best of all possible worlds, we could find an estimator θ̂ for which θ̂ = θ always. However, θ̂ is a function of the
sample Xi’s, so it is a random variable. For some samples, θ̂ will yield a value larger than θ, whereas for other samples
θ̂ will underestimate θ. If we write

θ̂ = θ + error of estimation

then an accurate estimator would be one resulting in small estimation errors, so that estimated values will be near the
true value.

A popular way to quantify the idea of θ̂ being close to θ is to consider the squared error (θ̂−θ)2. An omnibus measure
of accuracy is the mean squared error (expected squared error), which entails averaging the squared error over all possible
samples and resulting estimates.

Definition: The mean square error of a point estimator θ̂ is

MSE(θ̂) = E[(θ̂ − θ)2].

The mean square error of an estimator θ̂, MSE(θ̂), is a function of both its variance and its bias. If B(θ̂) denotes the
bias of the estimator θ̂, it can be shown that, since

V ar(X) = E[X2]− (E[X])2 ⇒ E[X2] = V ar(X) + (E[X])2,

then,
MSE(θ̂) = V ar(θ̂) + [B(θ̂)]2.
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EXAMPLE 7.2

Consider once again estimating a population proportion of “successes” p. The natural estimator of p is the sample
proportion of successes p̂ = X/n. The number of successes X in the sample has a binomial distribution with
parameters n and p, so E[X] = np and V ar(X) = np(1− p). The expected value of the estimator is

E[p̂] = E

[
X

n

]
=

1

n
E[X] =

1

n
np = p.

Thus the bias of p̂ is p− p = 0, and therefore p̂ is an unbiased estimator. Giving the mean squared error as

E[(p̂− p)2] = V ar(p̂) + 02 = V ar

(
X

n

)
=

1

n2
V ar(X) =

p(1− p)
n

.

Now consider the alternative estimator p̂ = (X + 2)/(n+ 4). That is, add two successes and two failures to the
sample and then calculate the sample proportion of successes. The bias of the alternative estimator is

E

[
X + 2

n+ 4

]
− p =

1

n+ 4
E[X + 2]− p =

np+ 2

n+ 4
− p =

2/n− 4p/n

1 + 4/n
.

This bias is not zero unless p = 0.5. The variance of the estimator is

V ar

(
X + 2

n+ 4

)
=

1

(n+ 4)2
V ar(X + 2) =

V ar(X)

(n+ 4)2
=
np(1− p)
(n+ 4)2

=
p(1− p)

n+ 8 + 16/n
.

This variance approaches zero as the sample size increases. The mean squared error of the alternative estimator is

MSE(p̂) =
p(1− p)

n+ 8 + 16/n
+

(
2/n− 4p/n

1 + 4/n

)2

.

7.2.2 Some Common Unbiased Point Estimators

In this section, we focus on some estimators that merit consideration on the basis of intuition. For example, it seems
natural to use the sample mean X̄ to estimate the population mean µ and S2 as the sample variance unbiased estimator
of σ2. Also to use the sample proportion p̂ = x/n to estimate a binomial parameter p.

Propositions:

1. When X is a binomial r.v with parameters n and p, the sample proportion p̂ = X/n is an unbiased estimator of p.

2. If X1, X2, . . . , Xn is a random sample from a distribution with mean µ, then X̄ is an unbiased estimator of µ.

EXAMPLE 7.3

Let X1, X2, . . . , Xn be a random sample with E[Xi] = µ and V ar(Xi) = σ2. Show that

S2 =
1

n− 1

n∑
i=1

(Xi − X̄)2

is an unbiased estimator for σ2.
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Solution. It can be shown that

n∑
i=1

(Xi − X̄)2 =

n∑
i=1

X2
i −

1

n

(
n∑
i=1

Xi

)2

=

n∑
i=1

X2
i − nX̄2.

Hence

E

[
n∑
i=1

(Xi − X̄)2

]
= E

[
n∑
i=1

X2
i

]
− nE[X̄2].

Notice thatE[X2
i ] is the same for i = 1, 2, . . . , n. We use this and the fact that the variance of a r.v is given by V ar(X) =

E[X2]−(E[X])2 to conclude thatE[X2
i ] = V ar(Xi)+(E[Xi])

2 = σ2+µ2,E[X̄2] = V ar(X̄)+(E[X̄])2 = σ2/n+µ2,
and that

E

[
n∑
i=1

(Xi − X̄)2

]
=

n∑
i=1

(σ2 + µ2)− n
(
σ2

n
+ µ2

)
= n(σ2 + µ2)− n

(
σ2

n
+ µ2

)
= nσ2 − σ2 = (n− 1)σ2.

It follows that

E[S2] =
1

n− 1
E

[
n∑
i=1

(Xi − X̄)2

]
=

1

n− 1
(n− 1)σ2 = σ2,

so we see that S2 is an unbiased estimator for σ2. J

Proposition: Among all estimators of θ that are unbiased, choose the one that has minimum variance. The resulting θ̂ Is
called the minimum variance unbiased estimator (MVUE) of θ. Since MSE = variance+ (bias)2, seeking an
unbiased estimator with minimum variance is the same as seeking an unbiased estimator that has minimum mean
squared error.

Definition: The standard error of an estimator θ̂ is its standard deviation σθ̂ =

√
V ar(θ̂). If the standard error itself

involves unknown parameters whose values can be estimated, substitution of these estimates into sθ̂ yields the estimated
standard error (estimated standard deviation) of the estimator. The estimated standard error can be denoted either by σ̂θ̂
(theˆover σ emphasises that σθ̂ is being estimated) or by Sθ̂.

EXAMPLE 7.4

Assuming that breakdown voltage is normally distributed, µ̂ = X̄ is the best estimator of µ. If the value of σ is
known to be 1.5, the standard error of X̄ is σX̄ = σ/

√
n = 1.5/

√
20 = 0.335. If, as is usually the case, the

value of σ is unknown, the estimate σ̂ = s = 1.462 is substituted into σX̄ to obtain the estimated standard error
σ̂X̄ = sX̄ = s/

√
n = 1.462/

√
20 = 0.327.

EXAMPLE 7.5

Back to Example ??, the standard error of p̂ = X/n is

σp̂ =
√
V ar(X/n) =

√
V ar(X)

n2
=

√
npq

n2
=

√
pq

n
.

Since p and q = 1− p are unknown (else why estimate?), we substitute p̂ = x/n and q̂ = 1− x/n into σp̂, yielding
the estimated standard error σ̂p̂ =

√
p̂q̂/n =

√
(0.6)(0.4)/25 = 0.098. Alternatively, since the largest value of pq

is attained when p = q = 0.5, an upper bound on the standard error is
√

1/(4n) = 0.1.
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7.3 Methods of Point Estimation

So far the point estimators we have introduced were obtained via intuition and/or educated guesswork. We now discuss
two “constructive” methods for obtaining point estimators: the method of moments and the method of maximum like-
lihood. By constructive we mean that the general definition of each type of estimator suggests explicitly how to obtain
the estimator in any specific problem. Although maximum likelihood estimators are generally preferable to moment
estimators because of certain efficiency properties, they often require significantly more computation than do moment
estimators. It is sometimes the case that these methods yield unbiased estimators.

7.3.1 The method of Moment

The basic idea of this method is to equate certain sample characteristics, such as the mean, to the corresponding popula-
tion expected values. Then solving these equations for unknown parameter values yields the estimators.

Definition: Let X1, X2, . . . , Xn be a r.s from pdf f(x). For k = 1, 2, 3, . . . , the kth population moment, or kth moment
of the distribution f(x), is µr = E[Xk]. The kth sample moment is Mr = (1/n)

∑n
i=1X

k
i .

Thus the first population moment is E[X] = µ and the first sample moment is
∑
Xi/n = X̄ . The second population

and sample moments are E[X2] and
∑
X2
i /n, respectively. The population moments will be functions of any unknown

parameters θ1, θ2, . . . .

Definition: Let X1, X2, . . . , Xn be a random sample from a distribution with pdf f(x; θ1, . . . , θm), where θ1, . . . , θm

are parameters whose values are unknown. Then the moment estimators θ̂1, . . . , θ̂m are obtained by equating the first
m sample moments to the corresponding first m population moments and solving for θ1, . . . , θm.

EXAMPLE 7.6

Let X1, X2, . . . , Xn be a r.s of size n from P (λ). Estimate λ by the method of moment.

Solution. Since Xi ∼ P (λ), then f(x;λ) = e−λλx

x! , x = 0, 1, . . . . In this case, we have one unknown parameter, λ, so
we set

µr = Mr at λ = λ̂, r = 1

therefore,

µ1 = E[X] = λ and M1 =
1

n

n∑
i=1

xi ⇒ λ̂ =
1

n

n∑
i=1

xi = x̄

So, λ̂ = x̄ is the moment estimate of λ. J

EXAMPLE 7.7

Let X1, X2, . . . , Xn be a r.s of size n from Exp(1/θ). Estimate λ by the method of moment.

Solution. Since X ∼ Exp(1/θ), then f(x) = θe−θx, 0 < x <∞. In this case, we have one unknown parameter, λ, so
we set

X̄ =
1

θ
⇒ θ̂ =

1

x̄
.

J
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EXAMPLE 7.8

Let X1, X2, . . . , Xn be a random sample from a gamma distribution with parameters α and β. Find the Moment
estimators for α and β.

Solution. Since Xi ∼ G(α, β), then µ = E[X] = αβ and E[X2] = β2Γ(α + 2)/Γ(α) = β2(α + 1)α. Then The
moment estimators of α and β are obtained by solving

X̄ = αβ,
1

n

n∑
i=1

X2
i = α(α+ 1)β2.

Since α(α+ 1)β2 = α2β2 + αβ2 and the first equation implies α2β2 = (X̄)2, the second equation becomes

1

n

∑
X2
i = (X̄)2 + αβ2.

Now dividing each side of this second equation by the corresponding side of the first equation and substituting back gives
the estimators

α̂ =
(X̄)2

1
n

∑
X2
i − (X̄)2

=
n(X̄)2

(n− 1)S2
, β̂ =

1
n

∑
X2
i − (X̄)2

X̄
=

(n− 1)S2

n(X̄)2

J

EXAMPLE 7.9

Let X1, . . . , Xn be a r.s from a generalized negative binomial distribution with parameters r and p. Estimate the
value of r and p.

Solution. Since E[X] = r(1− p)/p and V ar(X) = r(1− p)/p2, E[X2] = V ar(X) + (E[X])2 = r(1− p)(r − rp+
1)/p2. Equating

E[X] = X̄ and E[X2] = (1/n)
∑

X2
i

eventually gives,

p̂ =
X̄

1
n

∑
X2
i − (X̄)2

=
nX̄

(n− 1)S2
, r̂ =

(X̄)2

1
n

∑
X2
i − (X̄)2 − X̄

=
n(X̄)2

(n− 1)S2 − X̄
.

J

7.3.2 Maximum Likelihood Method

The method of maximum likelihood was first introduced by R. A. Fisher, a geneticist and statistician, in the 1920s. Most
statisticians recommend this method, at least when the sample size is large, since the resulting estimators have certain
desirable efficiency properties

Definition: The Likelihood Function of a r.s X1, X2, . . . , Xn of size n from a distribution with a pdf f(x) with
parameters θ1, θ2, . . . , θm, is defined to be the joint pdf of the n r.v’s X1, X2, . . . , Xn which is considered as a function
of θ’s and denoted by L(θ̃; x̃), i.e

L(θ̃; x̃) = L(θ1, θ2, . . . , θm;x1, x2, . . . , xn) = f(x̃; θ̃) =

n∏
i=1

f(xi).
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The maximum likelihood estimates θ̂1, θ̂2, . . . , θ̂m are those values of the θi’s that maximize the likelihood function,
so that

L(x1, x2, . . . , xn; θ̂1, θ̂2, . . . , θ̂m) ≥ L(x1, x2, . . . , xn; θ1, θ2, . . . , θm), ∀θ1, θ2, . . . , θm

When the Xi’s are substituted in place of the xi’s, the maximum likelihood estimators (mle’s) result.

Notes:

1. Many likelihood functions satisfy the condition that mle is the solution of the likelihood equations

∂L(θ̃; x̃)

∂θr
= 0, at θ̃ =

ˆ̃
θ, r = 1, 2, . . . ,m.

2. Since L(θ̃; x̃) and lnL(θ̃; x̃) have their maxima at the same value of θ̃, so it is some times easier to find the
maximum of the logarithm of the likelihood function. In this case, the mle θ̃ of θ which maximises L(θ̃; x̃) may be
given by the solution of

∂ lnL(θ̃; x̃)

∂θr
= 0, at θ̃ =

ˆ̃
θ, r = 1, 2, . . . ,m.

EXAMPLE 7.10

Let X1, X2, . . . , Xn be a r.s of size n from Bernoulli distribution with a parameter p (X ∼ Ber(p)). Estimate p
using the maximum likelihood method.

Solution. Since X ∼ Ber(p), then the pdf of X is: f(x) = px(1− p)1−x, x = 0, 1. The likelihood function is

L(p;x1, . . . , xn) = f(x1, . . . , xn; p) =

n∏
i=1

f(xi) =

n∏
i=1

pxi(1− p)1−xi = p
∑
xi(1− p)n−

∑
xi

It is easier to maximise lnL(p, x1, . . . , xn), and

ln l(p; x̃) = (

n∑
i=1

xi) ln p+ (n−
n∑
i=1

) ln(1− p),

Hence,

∂ lnL

∂p
=

∑n
i=1 xi
p

−
n−

∑n
i=1 xi

1− p
∂ lnL

∂p

∣∣∣
p=p̂

= 0⇒
∑n
i=1 xi
p̂

−
n−

∑n
i=1 xi

1− p̂
= 0⇒ nx̄

p̂
=
n− nx̄
1− p̂

J

Therefore,
nx̄− nx̄p̂ = np̂− nx̄p̂⇒ p̂ = x̄

Then, X̄ is the mle of p.
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EXAMPLE 7.11

Let X1, X2, . . . , Xn be a r.s from a normal distribution with mean µ and variance σ2. Find the MLEs of µ and σ2.

Solution. Since, X ∼ N(µ, σ2), then f(x) = 1√
2πσ

e−
(x−µ)2

2σ2 , −∞ < x <∞. The likelihood function is

L(ν, σ2; x̃) = f(x1, x2, . . . , xn;µ, σ2) =

n∏
i=1

f(xi) =

n∏
i=1

1√
2πσ

e−
(xi−µ)

2

2σ2

=

(
1

2πσ2

)n/2
exp

[
−1

2σ2

n∑
i=1

(xi − µ)2

]
.

Further,

lnL(µ, σ2; x̃) = −n
2

lnσ2 − n

2
ln 2π − 1

2σ2

n∑
i=1

(xi − µ)2.

The MLEs of µ and σ2 are the values that make lnL(µ, σ2; x̃) a maximum. Taking derivatives with respect to µ and σ2,
we obtain

∂ lnL(µ, σ2; x̃)

∂µ
=

1

σ2

n∑
i=1

(xi − µ),

and
∂ lnL(µ, σ2; x̃)

∂σ
= −

(n
2

)( 1

σ2

)
+

1

2σ4

n∑
i=1

(xi − µ)2.

Setting these derivatives equal to zero and solving simultaneously, we obtain from the first equation

1

σ̂

2 n∑
i=1

(xi − µ̂) = 0, or
n∑
i=1

xi − nµ̂ = 0, and µ̂ =
1

n

n∑
i=1

xi = x̄.

Substituting x̄ for µ̂ in the second equation and solving for σ̂2, we have

−
( n
σ̂2

)
+

1

σ̂4

n∑
i=1

(xi − x̄)2 = 0, or σ̂2 =
1

n

n∑
i=1

(xi − x̄)2.

J

EXAMPLE 7.12

Let X1, X2, . . . , Xn be a r.s of size n from Gamma distribution with parameters α and β. Find the MLEs α and β.

Solution. The pdf of a r.v X ∼ G(α, β) is: f(x) = 1
Γ(α)βαx

α−1e−x/β , 0 < x <∞. The likelihood function is

L(ℵ, β; x̃) =

n∏
i=1

f(xi) =

n∏
i=1

1

Γ(α)βα
xα−1
i e−xi/β = [Γ(α)]−nβ−nα

(
n∏
i=1

xi

)α−1

e−
1
β

∑n
i=1 xi ,

Also,

lnL(α, β; x̃) = −n ln Γ(α)− nα lnβ + (α− 1)

n∑
i=1

lnxi −
1

β

n∑
i=1

xi.
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Now, to maximise lnL(α, β; x̃),
∂ lnL

∂α
= −nψ(α)− n lnβ +

n∑
i=1

lnxi,

where, ψ(α) = d
dα ln Γ(α). Also

∂ lnL(α, β; x̃)

∂β
= −nα

β
+

1

β2

n∑
i=1

xi.

Set ∂ lnL
∂α = 0 and ∂ lnL

∂β = 0 at α = α̂ and β = β̂, we have

− nψ(α̂)− n ln β̂ +

n∑
i=1

lnxi = 0 (7.1)

and

− nα̂

β̂
+

1

β̂

n∑
i=1

xi = 0 ⇒ nα̂ =
nx̄

β̂
⇒ α̂β̂ = x̄. (7.2)

From equations (??) and (??), we get

−nψ(α̂)− ln
x̄

α̂
+

n∑
i=1

lnxi = 0⇒ −nψ(α̂)− n ln x̄+ n ln α̂+

n∑
i=1

lnxi,

hence

n[ln α̂− ψ(α̂)] = n ln x̄−
n∑
i=1

lnxi (7.3)

There is no analytical solution for equation (??) because of ψ(α̂). In this case, we need to approximate the value of α̂
and β̂ by the use of numerical methods. J
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